Size control of ZnO nanorod arrays grown by metalorganic chemical vapour deposition

The size control of vertically aligned ZnO nanorod arrays (NRAs) grown by catalyst-free metalorganic chemical vapour deposition is accomplished by changing the O/Zn precursor ratio. At a higher O/Zn precursor ratio, fat ZnO NRAs with excellent alignment are produced. In contrast, slim ZnO NRAs that are considerably less well aligned grow at a lower O/Zn precursor ratio. Irrespective of their different sizes and alignments, the individual ZnO nanorods are of a defect-free single-crystalline nature and of high optical quality, indicating that changing the precursor ratio is a promising way of fabricating size-controlled ZnO NRAs.

[1]  N. Binh,et al.  Photoluminescence study of ZnO nanorods epitaxially grown on sapphire (112̄0) substrates , 2004 .

[2]  David P. Norton,et al.  Depletion-mode ZnO nanowire field-effect transistor , 2004 .

[3]  Charles M. Lieber,et al.  Single-nanowire electrically driven lasers , 2003, Nature.

[4]  Lars Samuelson,et al.  One-dimensional steeplechase for electrons realized , 2002 .

[5]  Peidong Yang,et al.  Block-by-Block Growth of Single-Crystalline Si/SiGe Superlattice Nanowires , 2002 .

[6]  T. Tseng,et al.  Field emission and photofluorescent characteristics of zinc oxide nanowires synthesized by a metal catalyzed vapor-liquid-solid process , 2004 .

[7]  Charles M. Lieber,et al.  Growth of nanowire superlattice structures for nanoscale photonics and electronics , 2002, Nature.

[8]  Zhiyong Fan,et al.  Photoluminescence and polarized photodetection of single ZnO nanowires , 2004 .

[9]  M. Jeong,et al.  Catalyst-free growth of ZnO nanowires by metal-organic chemical vapour deposition (MOCVD) and thermal evaporation , 2004 .

[10]  Gyu-Chul Yi,et al.  Excitonic emissions observed in ZnO single crystal nanorods , 2003 .

[11]  Gyu-Chul Yi,et al.  ZnO nanorods: synthesis, characterization and applications , 2005 .

[12]  Jih-Jen Wu,et al.  LOW-TEMPERATURE GROWTH OF WELL-ALIGNED ZNO NANORODS BY CHEMICAL VAPOR DEPOSITION , 2002 .

[13]  Gyu-Chul Yi,et al.  Metalorganic vapor-phase epitaxial growth of vertically well-aligned ZnO nanorods , 2002 .

[14]  Q. Wan,et al.  Electronic transport through individual ZnO nanowires , 2004 .

[15]  David R. Clarke,et al.  Piezoelectric contributions to the electrical behavior of ZnO varistors , 2000 .

[16]  Yiying Wu,et al.  Room-Temperature Ultraviolet Nanowire Nanolasers , 2001, Science.

[17]  W. Park,et al.  Photocatalysis Using ZnO Thin Films and Nanoneedles Grown by Metal–Organic Chemical Vapor Deposition , 2004 .

[18]  Younan Xia,et al.  One‐Dimensional Nanostructures: Synthesis, Characterization, and Applications , 2003 .

[19]  Jin Suk Kim,et al.  Fabrication and electrical characteristics of high-performance ZnO nanorod field-effect transistors , 2004 .

[20]  David P. Norton,et al.  ZnO nanowire growth and devices , 2004 .

[21]  J. Choy,et al.  Soft Solution Route to Directionally Grown ZnO Nanorod Arrays on Si Wafer; Room‐Temperature Ultraviolet Laser , 2003 .

[22]  J. Park,et al.  Comparative studies on the growth behavior of ZnO nanorods by metalorganic chemical vapor deposition depending on the type of substrates , 2005 .

[23]  Dapeng Yu,et al.  High‐Quality Ultra‐Fine GaN Nanowires Synthesized Via Chemical Vapor Deposition , 2003 .

[24]  F. Ren,et al.  Thermal degradation of electrical properties and morphology of bulk single-crystal ZnO surfaces , 2004 .

[25]  Zu Rong Dai,et al.  Novel Nanostructures of Functional Oxides Synthesized by Thermal Evaporation , 2003 .

[26]  Jung Ho Je,et al.  Heteroepitaxial growth behavior of Mn-doped ZnO thin films on Al2O3 (0001) by pulsed laser deposition , 2004 .

[27]  J. F. Lee,et al.  Electronic structure of ZnO nanorods studied by angle-dependent x-ray absorption spectroscopy and scanning photoelectron microscopy , 2004 .

[28]  H. Yan,et al.  Morphogenesis of One‐Dimensional ZnO Nano‐ and Microcrystals , 2003 .