Afterbody Heating Predictions for a Mars Science Laboratory Entry Vehicle

*The Mars Science Laboratory mission intends to deliver a large rover to the Martian surface within 10 km of its target site. One candidate entry vehicle aeroshell consists of a 3.75-m diameter, 70-deg sphere-cone forebody and a biconic afterbody similar to that of Viking. This paper presents computational fluid dynamics predictions of laminar afterbody heating rates for this configuration and a 2010 arrival at Mars. Computational solutions at flight conditions used an 8-species Mars gas model in chemical and thermal non-equilibrium. A grid resolution study examined the effects of mesh spacing on afterbody heating rates and resulted in grids used for heating predictions on a reference entry trajectory. Afterbody heating rate reaches its maximum value near 0.6 W/cm 2 on the first windward afterbody cone at the time of peak freestream dynamic pressure. Predicted afterbody heating rates generally are below 3% of the forebody laminar nose cap heating rate throughout the design trajectory. The heating rates integrated over time provide total heat load during entry, which drives thermal protection material thickness. Nomenclature

[1]  Richard W. Powell,et al.  Mars Polar Lander Aerothermodynamic and Entry Dispersion Analysis , 1999 .

[2]  K. Sutton,et al.  A general stagnation-point convective heating equation for arbitrary gas mixtures , 1971 .

[3]  Karl T. Edquist,et al.  Aeroheating Environments for a Mars Smart Lander , 2002 .

[4]  Brian R. Hollis,et al.  Heat Shield Cavity Parametric Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell , 2002 .

[5]  Karl T. Edquist,et al.  Computational Aeroheating Predictions for Mars Lander Configurations , 2003 .

[6]  Brian R. Hollis,et al.  Transition Onset and Turbulent Heating Measurements for the Mars Science Laboratory Entry Vehicle , 2005 .

[7]  Prasun N. Desai,et al.  Static Aerodynamics of the Mars Exploration Rover Entry Capsule , 2005 .

[8]  Richard W. Powell,et al.  Entry Configurations and Performance Comparisons for the Mars Smart Lander , 2006 .

[9]  J Alter Stephen The Volume Grid Manipulator (VGM): A Grid Reusability Tool , 1997 .

[10]  Cheatwood F. McNeil,et al.  User''s Manual for the Langley Aerothermodynamic Upwind Relaxation Algorithm (LAURA) , 1996 .

[11]  P. Roe Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes , 1997 .

[12]  D. Robert,et al.  Mars Pathfinder Atmospheric Entry Reconstruction , 1998 .

[13]  Yung K. Choo,et al.  Surface Modeling, Grid Generation, and Related Issues in Computational Fluid Dynamic (CFD) Solutions , 1995 .

[14]  Reese L. Sorenson,et al.  A 3DGRAPE/AL: The Ames/Langley technology upgrade , 1995 .

[15]  John R. Chawner,et al.  Gridgen's Implementation of Partial Differential Equation Based Structured Grid Generation Methods , 1999, IMR.

[16]  Karl T. Edquist,et al.  Control Surface and Afterbody Experimental Aeroheating for a Proposed Mars Smart Lander Aeroshell , 2002 .

[17]  Brian R. Hollis,et al.  Heat Shield Cavity Parametric Experimental Aeroheating for a Mars Smart Lander , 2002 .

[18]  Richard W. Powell,et al.  Entry System Design Considerations for Mars Landers , 2001 .

[19]  Mike J. Baines Introduction to “Approximate Riemann Solvers, Parameter Vectors, and Difference Schemes” , 1997 .

[20]  G. L. Brauer,et al.  Capabilities and applications of the Program to Optimize Simulated Trajectories (POST). Program summary document , 1977 .

[21]  Graham V. Candler,et al.  Review of Chemical-Kinetic Problems of Future NASA Missions, II: Mars Entries , 1993 .

[22]  Brian R. Hollis,et al.  Boundary Layer Transition Correlations and Aeroheating Predictions for Mars Smart Lander , 2002 .

[23]  Michael J. Wright,et al.  Survey of Afterbody Aeroheating Flight Data for Planetary Probe Thermal Protection System Design , 2005 .