On Adjunctions between Fuzzy Preordered Sets: Necessary Conditions

There exists a direct relation between fuzzy rough sets and fuzzy preorders. On the other hand, it is well known the existing parallelism between Formal Concept Analysis and Rough Set Theory. In both cases, Galois connections play a central role. In this work, we focus on adjunctions (also named isotone Galois connections) between fuzzy preordered sets; specifically, we study necessary conditions that have to be fulfilled in order such an adjunction to exist.

[1]  Constantin V. Negoita,et al.  On Fuzzy Systems , 1978 .

[2]  Fu Li,et al.  Concept Lattice Based on the Rough Sets , 2009 .

[3]  Frank Klawonn,et al.  A formal study of linearity axioms for fuzzy orderings , 2004, Fuzzy Sets Syst..

[4]  Ulrich Bodenhofer,et al.  A Similarity-Based Generalization of Fuzzy Orderings Preserving the Classical Axioms , 2000, Int. J. Uncertain. Fuzziness Knowl. Based Syst..

[5]  Piotr Sankowski,et al.  Mathematical Foundations of Computer Science 2011 - 36th International Symposium, MFCS 2011, Warsaw, Poland, August 22-26, 2011. Proceedings , 2011, MFCS.

[6]  James Propp,et al.  A Galois Connection in the Social Network , 2012 .

[7]  Bernhard Ganter,et al.  Formal Concept Analysis , 2013 .

[8]  Sergei O. Kuznetsov,et al.  Galois Connections in Data Analysis: Contributions from the Soviet Era and Modern Russian Research , 2005, Formal Concept Analysis.

[9]  Jan Konecny,et al.  Isotone fuzzy Galois connections with hedges , 2011, Inf. Sci..

[10]  Radim Belohlávek,et al.  Triadic fuzzy Galois connections as ordinary connections , 2014, Fuzzy Sets Syst..

[11]  A. Frascella,et al.  Fuzzy Galois connections under weak conditions , 2011, Fuzzy Sets Syst..

[12]  Ulrich Bodenhofer,et al.  Representations and constructions of similarity-based fuzzy orderings , 2003, Fuzzy Sets Syst..

[13]  Hans-Paul Schwefel,et al.  Advances in Computational Intelligence , 2003, Natural Computing Series.

[14]  Stanislav Zivny,et al.  An Algebraic Theory of Complexity for Valued Constraints: Establishing a Galois Connection , 2011, MFCS.

[15]  Zoltán Csajbók,et al.  Partial approximative set theory: A generalization of the rough set theory , 2010, 2010 International Conference of Soft Computing and Pattern Recognition.

[16]  Manuel Ojeda-Aciego,et al.  Generating Isotone Galois Connections on an Unstructured Codomain , 2014, IPMU.

[17]  Samson Abramsky,et al.  Category Theory and Computer Programming , 1986, Lecture Notes in Computer Science.

[18]  Qingguo Li,et al.  Fuzzy closure systems on L—ordered sets , 2011, Math. Log. Q..

[19]  David A. Schmidt,et al.  Calois Connections and Computer Science Applications , 1985, CTCS.

[20]  Henri Prade,et al.  Interval-Valued Fuzzy Galois Connections: Algebraic Requirements and Concept Lattice Construction , 2010, Fundam. Informaticae.

[21]  Bernard De Baets,et al.  A compendium of fuzzy weak orders: Representations and constructions , 2007, Fuzzy Sets Syst..

[22]  Andrei Popescu,et al.  Non-commutative fuzzy Galois connections , 2003, Soft Comput..

[23]  Heribert Vollmer,et al.  Complexity of Constraints - An Overview of Current Research Themes [Result of a Dagstuhl Seminar] , 2008, Complexity of Constraints.

[24]  Marcin Wolski Galois Connections and Data Analysis , 2004, Fundam. Informaticae.

[25]  Dexue Zhang,et al.  Fuzzy Galois connections categorically , 2010, Math. Log. Q..

[26]  Radim Bělohlávek,et al.  Lattices of Fixed Points of Fuzzy Galois Connections , 2001 .

[27]  Manuel Ojeda-Aciego,et al.  On Galois Connections and Soft Computing , 2013, IWANN.

[28]  Jouni Järvinen Pawlak's Information Systems in Terms of Galois Connections and Functional Dependencies , 2007, Fundam. Informaticae.

[29]  Manuel Ojeda-Aciego,et al.  On the Existence of Isotone Galois Connections between Preorders , 2014, ICFCA.

[30]  Ferdinand Börner Basics of Galois Connections , 2008, Complexity of Constraints.

[31]  Klaus Denecke,et al.  Galois connections and applications , 2004 .

[32]  Radim Belohlávek,et al.  Fuzzy Galois Connections , 1999, Math. Log. Q..

[33]  G. Castellini,et al.  CATEGORICAL CLOSURE OPERATORS VIA GALOIS CONNECTIONS , .