Estimation of the shape parameter k of the negative binomial distribution

Using approximate Bayesian methods, an estimator of the shape parameter of the negative binomial distribution is introduced. Most of the available estimators of this parameter, such as the method of moment and the maximum likelihood estimators (MME and MLE), give inadmissible values when the mean of the observed sample is larger than its variance. In this case, the MME gives values while the MLE is infinite. Such observed sample in not unlikely when the mean of the population is close to its variance. The suggested estimator always has valid values, and turned out to be more efficient for most values of the parameter space. Family size data is used for illustration of the procedure.

[1]  B. M. Bennett,et al.  Sampling inspection tables for comparison of two groups using the negative binomial model , 1964 .

[2]  D. Kendall Stochastic Processes and Population Growth , 1949 .

[3]  C. I. Bliss,et al.  FITTING THE NEGATIVE BINOMIAL DISTRIBUTION TO BIOLOGICAL DATA AND NOTE ON THE EFFICIENT FITTING OF THE NEGATIVE BINOMIAL , 1953 .

[4]  L. T. Wilson,et al.  Clumping Patterns of Fruit and Arthropods in Cotton, with Implications for Binomial Sampling , 1983 .

[5]  K. Kojima,et al.  Survival of Mutant Genes , 1962, The American Naturalist.

[6]  Michel Wedel,et al.  Eye Fixations on Advertisements and Memory for Brands: A Model and Findings , 2000 .

[7]  G. Walter,et al.  Bayes Empirical Bayes Estimation for Natural Exponential Families with Quadratic Variance Functions , 1991 .

[8]  A. W. Kemp,et al.  Univariate Discrete Distributions , 1993 .

[9]  W. Piegorsch Maximum likelihood estimation for the negative binomial dispersion parameter. , 1990, Biometrics.

[10]  Ching Chun Li,et al.  Correlation between the numbers of two types of children in a family. , 1973 .

[11]  W. H. Furry On Fluctuation Phenomena in the Passage of High Energy Electrons through Lead , 1937 .

[12]  J. M. Elliott,et al.  Some methods for the statistical analysis of samples of benthic invertebrates , 1971 .

[13]  J. Wesolowski,et al.  Posterior mean identifies the prior distribution in nb and related models , 1997 .

[14]  C. C. Li,et al.  Heterogeneity of childless families. , 1973, Social biology.

[15]  P. McCullagh,et al.  Generalized Linear Models , 1992 .

[16]  J. H. Matis,et al.  Small Sample Comparison of Different Estimators of Negative Binomial Parameters , 1977 .

[17]  F. J. Anscombe,et al.  THE TRANSFORMATION OF POISSON, BINOMIAL AND NEGATIVE-BINOMIAL DATA , 1948 .

[18]  M. Binns Behavioural dynamics and the negative binomial distribution , 1986 .

[19]  T. Yanagimoto,et al.  Estimation for the negative binomial distribution based on the conditional likelihood , 1990 .

[20]  Joe N. Perry,et al.  Estimation of the Negative Binomial Parameter κ by Maximum Quasi -Likelihood , 1989 .