Goodness-of-Fit Tests and Nonparametric Adaptive Estimation for Spike Train Analysis

When dealing with classical spike train analysis, the practitioner often performs goodness-of-fit tests to test whether the observed process is a Poisson process, for instance, or if it obeys another type of probabilistic model (Yana et al. in Biophys. J. 46(3):323–330, 1984; Brown et al. in Neural Comput. 14(2):325–346, 2002; Pouzat and Chaffiol in Technical report, http://arxiv.org/abs/arXiv:0909.2785, 2009). In doing so, there is a fundamental plug-in step, where the parameters of the supposed underlying model are estimated. The aim of this article is to show that plug-in has sometimes very undesirable effects. We propose a new method based on subsampling to deal with those plug-in issues in the case of the Kolmogorov–Smirnov test of uniformity. The method relies on the plug-in of good estimates of the underlying model that have to be consistent with a controlled rate of convergence. Some nonparametric estimates satisfying those constraints in the Poisson or in the Hawkes framework are highlighted. Moreover, they share adaptive properties that are useful from a practical point of view. We show the performance of those methods on simulated data. We also provide a complete analysis with these tools on single unit activity recorded on a monkey during a sensory-motor task.Electronic Supplementary MaterialThe online version of this article (doi:10.1186/2190-8567-4-3) contains supplementary material.

[1]  Shigeru Shinomoto,et al.  Estimating the Firing Rate , 2010 .

[2]  Alexa Riehle,et al.  Spike synchronization and firing rate in a population of motor cortical neurons in relation to movement direction and reaction time , 2003, Biological Cybernetics.

[3]  Stefan Rotter,et al.  How Structure Determines Correlations in Neuronal Networks , 2011, PLoS Comput. Biol..

[4]  P. Reynaud-Bouret,et al.  Near optimal thresholding estimation of a Poisson intensity on the real line , 2008, 0810.5204.

[5]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[6]  M. Stephens EDF Statistics for Goodness of Fit and Some Comparisons , 1974 .

[7]  H. L. Bryant,et al.  Identification of synaptic interactions , 1976, Biological Cybernetics.

[8]  Sonja Grün,et al.  Unitary joint events in multiple neuron spiking activity: detection, significance, and interpretation , 1996 .

[9]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .

[10]  P. Reynaud-Bouret,et al.  Adaptive estimation for Hawkes processes; application to genome analysis , 2009, 0903.2919.

[11]  Eero P. Simoncelli,et al.  Spatio-temporal correlations and visual signalling in a complete neuronal population , 2008, Nature.

[12]  G. A. Barnard,et al.  Time Intervals between accidents—a note on Maguire, Pearson and Wynn's paper , 1953 .

[13]  D. Perkel,et al.  Simultaneously Recorded Trains of Action Potentials: Analysis and Functional Interpretation , 1969, Science.

[14]  Antoine Chaffiol,et al.  Automatic spike train analysis and report generation. An implementation with R, R2HTML and STAR , 2009, Journal of Neuroscience Methods.

[15]  K Yana,et al.  A method for testing an extended poisson hypothesis of spontaneous quantal transmitter release at neuromuscular junctions. , 1984, Biophysical journal.

[16]  Katherine A. Heller,et al.  Modelling Reciprocating Relationships with Hawkes Processes , 2012, NIPS.

[17]  W. Wildman,et al.  Theoretical Neuroscience , 2014 .

[18]  Niels Keiding,et al.  Statistical Models Based on Counting Processes , 1993 .

[19]  Eric L. Schwartz,et al.  Computational Neuroscience , 1993, Neuromethods.

[20]  A. R. Barron,et al.  Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities , 2003 .

[21]  Robert D. Nowak,et al.  Multiscale Poisson Intensity and Density Estimation , 2007, IEEE Transactions on Information Theory.

[22]  G. P. Moore,et al.  Neuronal spike trains and stochastic point processes. II. Simultaneous spike trains. , 1967, Biophysical journal.

[23]  Sonja Grün,et al.  Non-parametric significance estimation of joint-spike events by shuffling and resampling , 2003, Neurocomputing.

[24]  P. Rousseeuw,et al.  Wiley Series in Probability and Mathematical Statistics , 2005 .

[25]  Sonja Grün,et al.  Analysis of Parallel Spike Trains , 2010 .

[26]  P. J. Green,et al.  Probability and Statistical Inference , 1978 .

[27]  R. Kass,et al.  Statistical analysis of temporal evolution in single-neuron firing rates. , 2002, Biostatistics.

[28]  P. Bickel,et al.  Mathematical Statistics: Basic Ideas and Selected Topics , 1977 .

[29]  P. Brémaud Point processes and queues, martingale dynamics , 1983 .

[30]  Henry C. Tuckwell,et al.  Introduction to theoretical neurobiology , 1988 .

[31]  Yosihiko Ogata,et al.  Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes , 1988 .

[32]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[33]  P. J. Green,et al.  Density Estimation for Statistics and Data Analysis , 1987 .

[34]  Vincent Rivoirard,et al.  Inference of functional connectivity in Neurosciences via Hawkes processes , 2013, 2013 IEEE Global Conference on Signal and Information Processing.

[35]  Jerald F. Lawless,et al.  Statistical Models and Methods for Lifetime Data. , 1983 .

[36]  Shigeru Shinomoto,et al.  Kernel bandwidth optimization in spike rate estimation , 2009, Journal of Computational Neuroscience.

[37]  Stefan Rotter,et al.  Recurrent interactions in spiking networks with arbitrary topology. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  J. Wellner,et al.  EMPIRICAL PROCESSES WITH APPLICATIONS TO STATISTICS (Wiley Series in Probability and Mathematical Statistics) , 1987 .

[39]  F. Papangelou Integrability of expected increments of point processes and a related random change of scale , 1972 .

[40]  M K Habib,et al.  Dynamics of neuronal firing correlation: modulation of "effective connectivity". , 1989, Journal of neurophysiology.

[41]  Sonja Grün,et al.  Significance of joint-spike events based on trial-shuffling by efficient combinatorial methods , 2003, Complex..

[42]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[43]  T. Rydén An EM algorithm for estimation in Markov-modulated Poisson processes , 1996 .

[44]  Alexa Riehle,et al.  Cancellation of a planned movement in monkey motor cortex , 2006, Neuroreport.

[45]  M. Wilson,et al.  Analyzing Functional Connectivity Using a Network Likelihood Model of Ensemble Neural Spiking Activity , 2005, Neural Computation.

[46]  Susan A. Murphy,et al.  Monographs on statistics and applied probability , 1990 .

[47]  Yosihiko Ogata,et al.  On Lewis' simulation method for point processes , 1981, IEEE Trans. Inf. Theory.

[48]  P. Brémaud,et al.  STABILITY OF NONLINEAR HAWKES PROCESSES , 1996 .

[49]  A. Goldenshluger,et al.  Bandwidth selection in kernel density estimation: Oracle inequalities and adaptive minimax optimality , 2010, 1009.1016.

[50]  M. Rudemo Empirical Choice of Histograms and Kernel Density Estimators , 1982 .

[51]  Gordon Johnston,et al.  Statistical Models and Methods for Lifetime Data , 2003, Technometrics.

[52]  Alexandre B. Tsybakov,et al.  Introduction to Nonparametric Estimation , 2008, Springer series in statistics.

[53]  D. Brillinger The Identification of Point Process Systems , 1975 .

[54]  J. Wellner,et al.  Empirical Processes with Applications to Statistics , 2009 .

[55]  Patricia Reynaud-Bouret,et al.  Adaptive estimation of the intensity of inhomogeneous Poisson processes via concentration inequalities , 2003 .

[56]  Rolf Dach,et al.  Technical Report 2012 , 2013 .

[57]  R. Tibshirani,et al.  Regression shrinkage and selection via the lasso: a retrospective , 2011 .

[58]  K. Matthes Brémaud, P.: Point Processes and Queues. Martingale Dynamics. Springer‐Verlag, Berlin – Heidelberg – New York 1981, 373 S., 31 Abb., DM 88,– , 1988 .

[59]  Ole Winther,et al.  Multivariate Hawkes process models of the occurrence of regulatory elements , 2010, BMC Bioinformatics.

[60]  Sophie Schbath,et al.  FADO: A Statistical Method to Detect Favored or Avoided Distances between Occurrences of Motifs using the Hawkes' Model , 2005, Statistical applications in genetics and molecular biology.

[61]  E. S. Chornoboy,et al.  Maximum likelihood identification of neural point process systems , 1988, Biological Cybernetics.

[62]  P. Reynaud-Bouret,et al.  Some non asymptotic tail estimates for Hawkes processes , 2007 .

[63]  D. Vere-Jones,et al.  Some examples of statistical estimation applied to earthquake data , 1982 .

[64]  P. Brémaud Point Processes and Queues , 1981 .

[65]  Etienne Roquain,et al.  Type I error rate control for testing many hypotheses: a survey with proofs , 2010, 1012.4078.

[66]  Christophe Pouzat,et al.  On Goodness of Fit Tests For Models of Neuronal Spike Trains Considered as Counting Processes , 2009, 0909.2785.

[67]  Shy Shoham,et al.  Frontiers in Computational Neuroscience Correlation-based Analysis and Generation of Multiple Spike Trains Using Hawkes Models with an Exogenous Input , 2022 .

[68]  Y. Benjamini,et al.  Controlling the false discovery rate: a practical and powerful approach to multiple testing , 1995 .

[69]  P. Reynaud-Bouret,et al.  Adaptive density estimation: a curse of support? ✩ , 2009, 0907.1794.

[70]  Sonja Grün,et al.  Dynamical changes and temporal precision of synchronized spiking activity in monkey motor cortex during movement preparation , 2000, Journal of Physiology-Paris.

[71]  Ulrike Goldschmidt,et al.  An Introduction To The Theory Of Point Processes , 2016 .

[72]  A. Hawkes Point Spectra of Some Mutually Exciting Point Processes , 1971 .

[73]  Marie Doumic,et al.  Nonparametric Estimation of the Division Rate of a Size-Structured Population , 2011, SIAM J. Numer. Anal..

[74]  Lasso and probabilistic inequalities for multivariate point processes , 2015, 1208.0570.

[75]  M. Kendall Probability and Statistical Inference , 1956, Nature.

[76]  Franck Grammont,et al.  Multiple Tests Based on a Gaussian Approximation of the Unitary Events Method with Delayed Coincidence Count , 2012, Neural Computation.

[77]  Emery N. Brown,et al.  The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis , 2002, Neural Computation.