Modeling the Evolution of Glyphosate Resistance in Barnyardgrass (Echinochloa crus-galli) in Cotton-Based Production Systems of the Midsouthern United States

Abstract Glyphosate-resistant (GR) weeds have been a prime challenge to the sustainability of GR cotton-based production systems of the midsouthern United States. Barnyardgrass is known to be a high-risk species for evolving herbicide resistance, and a simulation model was developed for understanding the likelihood of glyphosate resistance evolution in this species in cotton-based systems. Under a worst-case scenario of five glyphosate applications in monoculture GR cotton, the model predicts resistance evolution in about 9 yr of continuous glyphosate use, with about 47% risk by year 15. A unique insight from this model is that management in response to GR Palmer amaranth in this system (a reactive response) provided a proactive means to greatly reduce the risks of glyphosate resistance evolution in barnyardgrass. Subsequent model analysis revealed that the risk of resistance is high in fields characterized by high barnyardgrass seedbank levels, seedling emergence, and seed production per square meter, whereas the risk is low in fields with high levels of postdispersal seed loss and annual seedbank loss. The initial frequency of resistance alleles was a high determinant of resistance evolution (e.g., 47% risk at year 15 at an initial frequency of 5e−8 vs. 4% risk at 5e−10). Monte Carlo simulations were performed to understand the influence of various glyphosate use patterns and production practices in reducing the rate and risk of glyphosate resistance evolution in barnyardgrass. Early planting and interrow cultivation are useful tools. Crop rotation is effective, but the diversity of weed management options practiced in the rotational crop is more important. Diversifying weed management options is the key, yet application timing and the choice of management option is critical. Model analyses illustrate the relative effectiveness of a number of diversified glyphosate use strategies in preventing resistance evolution and preserving the long-term utility of glyphosate in midsouthern U.S. cotton-based production systems. Nomenclature: Glyphosate; barnyardgrass; Echinochloa crus-galli (L.) Beauv. ECHCG; cotton; Gossypium hirsutum L. Resumen Las malezas resistentes a glyphosate (GR) han sido un reto primordial a la sostenibilidad de los sistemas de producción basados en algodón GR en el sur-medio de los Estados Unidos. Echinochloa crus-galli es reconocida como una maleza de alto riesgo de evolución de resistencia a herbicidas por lo que se desarrolló un modelo de simulación para entender la probabilidad de la evolución de resistencia a glyphosate en esta especie en sistemas basados en algodón. En el caso del peor escenario con cinco aplicaciones de glyphosate en monocultivo de algodón GR, el modelo predice la evolución de resistencia en aproximadamente 9 años de uso continuo de glyphosate, con cerca de 47% de riesgo en el año 15. Un detalle único de este modelo es que el manejo en respuesta a Amaranthus palmeri GR en este sistema (una respuesta reactiva) brindó los medios proactivos para reducir ampliamente el riesgo de la evolución de resistencia a glyphosate en E. crus-galli. El análisis siguiente del modelo reveló que el riesgo de resistencia es alto en campos caracterizados por tener niveles altos de bancos de semillas, emergencia de plántulas, y producción de semilla de E. crus-galli por metro cuadrado, mientras que el riesgo es bajo en campos con altos niveles de pérdida de semilla post-dispersión y pérdidas anuales del banco de semillas. La frecuencia inicial de alelos de resistencia fue un determinante importante en la evolución de resistencia (e.g., 47% de riesgo en el año 15 a una frecuencia inicial de 5e−8 vs. 4% de riesgo a 5e−10). Se realizaron simulaciones Monte Carlo para entender la influencia de varios patrones de uso de glyphosate y prácticas de producción en la reducción del riesgo y la tasa de evolución de resistencia a glyphosate en E. crus-galli. La siembra temprana y el cultivo entre hileras son herramientas útiles. La rotación de cultivos es efectiva, pero la diversidad en opciones de manejo de malezas en el cultivo de rotación es más importante. El diversificar las opciones de manejo de malezas es la clave, aunque el momento de aplicación y la escogencia de la opción de manejo son críticos. Análisis de modelos ilustran la efectividad relativa de utilizar un número variado de estrategias de uso de glyphosate en la prevención de la evolución de resistencia y la preservación de la utilidad de glyphosate en el largo plazo en los sistemas de producción basados en algodón en el sur-medio de los Estados Unidos.

[1]  S. Powles,et al.  Recurrent selection with reduced herbicide rates results in the rapid evolution of herbicide resistance in Lolium rigidum , 2005, Theoretical and Applied Genetics.

[2]  Stephen B. Powles,et al.  Glyphosate-Resistant Crops and Weeds: Now and in the Future , 2009 .

[3]  Joshua S. Yuan,et al.  Non-target-site herbicide resistance: a family business. , 2007, Trends in plant science.

[4]  F. Forcella,et al.  Implications of weed seedbank dynamics to weed management , 1997, Weed Science.

[5]  Jerry W. Davis,et al.  Glyphosate-resistant Palmer amaranth (Amaranthus palmeri ) confirmed in Georgia , 2006, Weed Science.

[6]  M. Patterson,et al.  Weed Management Programs for Glyphosate-Tolerant Cotton (Gossypium hirsutum)1 , 2001, Weed Technology.

[7]  Kenneth L. Smith,et al.  Consultant Perspectives on Weed Management Needs in Arkansas Rice , 2007, Weed Technology.

[8]  S. Powles,et al.  Enhanced rates of herbicide metabolism in low herbicide-dose selected resistant Lolium rigidum. , 2013, Plant, cell & environment.

[9]  K. Brye,et al.  Influence of Deep Tillage and a Rye Cover Crop on Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) Emergence in Cotton , 2012, Weed Technology.

[10]  Kenneth L. Smith,et al.  Seedbank Size and Emergence Pattern of Barnyardgrass (Echinochloa crus-galli) in Arkansas , 2011, Weed Science.

[11]  John R. Teasdale,et al.  Influence of Narrow Row/High Population Corn (Zea mays) on Weed Control and Light Transmittance , 1995, Weed Technology.

[12]  I. Heap International survey of herbicide-resistant weeds , 1997 .

[13]  M. Jasieniuk,et al.  The Evolution and Genetics of Herbicide Resistance in Weeds , 1996, Weed Science.

[14]  Adam S. Davis,et al.  When does it make sense to target the weed seed bank? , 2006 .

[15]  Benjamin R. Stinner,et al.  Postdispersal Predation of Velvetleaf (Abutilon theophrasti) Seeds , 1996, Weed Science.

[16]  Kenneth L. Smith,et al.  Consultant Perspectives on Weed Management Needs in Arkansas Cotton , 2007, Weed Technology.

[17]  P. Jha,et al.  Confirmation, Control, and Physiology of Glyphosate-Resistant Giant Ragweed (Ambrosia trifida) in Arkansas , 2011, Weed Technology.

[18]  Adam S. Davis,et al.  Influence of Seed Depth and Pathogens on Fatal Germination of Velvetleaf (Abutilon theophrasti) and Giant Foxtail (Setaria faberi) , 2007, Weed Science.

[19]  Paul Neve,et al.  Evolutionary-thinking in agricultural weed management. , 2009, The New phytologist.

[20]  J. Cardina,et al.  Crop rotation and tillage system effects on weed seedbanks , 2002, Weed Science.

[21]  K. N. Reddy,et al.  Glyphosate‐Resistant Crop Production Systems: Impact on Weed Species Shifts , 2010 .

[22]  J. M. Chandler,et al.  Germination and Viability of Weed Seeds After 2.5 Years in a 50-Year Buried Seed Study , 1978, Weed Science.

[23]  V. Osten,et al.  Survey of weed flora and management relative to cropping practices in the north-eastern grain region of Australia , 2007 .

[24]  M. Bagavathiannan,et al.  Seed production of barnyardgrass (Echinochloa crus-galli) in response to time of emergence in cotton and rice , 2011, The Journal of Agricultural Science.

[25]  Roy J. Smith,et al.  Propanil-Resistant Barnyardgrass (Echinochloa crus-galli) Control in Rice (Oryza sativa) , 1994, Weed Technology.

[26]  M. Liebman,et al.  Crop Rotation and Intercropping Strategies for Weed Management. , 1993, Ecological applications : a publication of the Ecological Society of America.

[27]  David Pimentel,et al.  Environmental and Economic Costs of Pesticide Use , 1992 .

[28]  Micheal D. K. Owen,et al.  A Grower Survey of Herbicide Use Patterns in Glyphosate-Resistant Cropping Systems , 2009, Weed Technology.

[29]  A. M. Wiese,et al.  Calculating the Threshold Temperature of Development for Weeds , 1987, Weed Science.

[30]  J. Dawson,et al.  Time of Emergence of Eight Weed Species , 1984, Weed Science.

[31]  Stephen B. Powles,et al.  Harrington Seed Destructor: A New Nonchemical Weed Control Tool for Global Grain Crops , 2012 .

[32]  Jason K. Norsworthy,et al.  Glyphosate Resistance in a Johnsongrass (Sorghum halepense) Biotype from Arkansas , 2011, Weed Science.

[33]  R. Blackshaw Influence of Soil Temperature, Soil Moisture, and Seed Burial Depth on the Emergence of Round-Leaved Mallow (Malva pusilla) , 1990, Weed Science.

[34]  L. R. Oliver,et al.  Confirmation and Resistance Mechanisms in Glyphosate-Resistant Common Ragweed (Ambrosia artemisiifolia) in Arkansas , 2009, Weed Science.

[35]  Kenneth L. Smith,et al.  Confirmation of Glyphosate-Resistant Italian Ryegrass (Lolium perenne ssp. multiflorum) in Arkansas , 2011, Weed Technology.

[36]  Dale L. Shaner,et al.  The impact of glyphosate‐tolerant crops on the use of other herbicides and on resistance management , 2000 .

[37]  Douglas D. Buhler,et al.  Ecological Management of Agricultural Weeds: Frontmatter , 2001 .

[38]  S. Powles,et al.  Evolved Resistance to Glyphosate in Junglerice (Echinochloa colona) from the Tropical Ord River Region in Australia , 2012, Weed Technology.

[39]  K. Brye,et al.  Influence of Deep Tillage, a Rye Cover Crop, and Various Soybean Production Systems on Palmer Amaranth Emergence in Soybean , 2013, Weed Technology.

[40]  P. E. Keeley,et al.  Growth and Interaction of Barnyardgrass (Echinochloa crus-galli) with Cotton (Gossypium hirsutum) , 1991, Weed Science.

[41]  Stephen B. Powles,et al.  Simulating evolution of glyphosate resistance in Lolium rigidum II: past, present and future glyphosate use in Australian cropping , 2003 .

[42]  S. Moss,et al.  Modelling different cultivation and herbicide strategies for their effect on herbicide resistance in Alopecurus myosuroides , 2000 .

[43]  M. Owen,et al.  Inheritance of evolved glyphosate resistance in Conyza canadensis (L.) Cronq. , 2004, Theoretical and Applied Genetics.

[44]  Jason K. Norsworthy,et al.  Modeling Glyphosate Resistance Management Strategies for Palmer Amaranth (Amaranthus palmeri) in Cotton , 2011 .

[45]  H. Beckie,et al.  Herbicide-resistant weed management: focus on glyphosate. , 2011, Pest management science.

[46]  S. Askew,et al.  Weed management with CGA-362622, fluometuron, and prometryn in cotton , 2002, Weed Science.

[47]  Kevin D. Brewer,et al.  Using soil-applied herbicides in combination with glyphosate in a glyphosate-resistant cotton herbicide program , 2004 .

[48]  Randy L. Anderson,et al.  A multi-tactic approach to manage weed population dynamics in crop rotations , 2005 .

[49]  D. Thornby,et al.  Simulating the evolution of glyphosate resistance in grains farming in northern Australia. , 2009, Annals of botany.

[50]  J. Boyer,et al.  Interference of Palmer amaranth in corn , 2001, Weed Science.

[51]  Robert L. Nichols,et al.  Reducing the Risks of Herbicide Resistance: Best Management Practices and Recommendations , 2012, Weed Science.

[52]  R. Hartzler Velvetleaf (Abutilon theophrasti) Population Dynamics Following a Single Year's Seed Rain , 1996, Weed Technology.

[53]  J. Teasdale,et al.  Light transmittance, soil temperature, and soil moisture under residue of hairy vetch and rye , 1993 .

[54]  L. R. Oliver,et al.  Influence of planting date on common cocklebur (Xanthium strumarium) interference in early-maturing soybean (Glycine max) , 1998, Weed Science.

[55]  H. Beckie,et al.  Herbicide-Resistant Weeds: Management Tactics and Practices1 , 2006, Weed Technology.

[56]  Jason K. Norsworthy,et al.  Modelling evolution and management of glyphosate resistance in Amaranthus palmeri , 2011 .

[57]  Jason K. Norsworthy,et al.  Confirmation and Control of Glyphosate-Resistant Palmer Amaranth (Amaranthus palmeri) in Arkansas , 2008, Weed Technology.

[58]  G. Charles,et al.  Managing the risk of glyphosate resistance in Australian glyphosate- resistant cotton production systems. , 2008, Pest management science.

[59]  Eric R. Gallandt,et al.  How can we target the weed seedbank? , 2006, Weed Science.