Topology-optimization of Structures Based on the MLPG Mixed Collocation Method

The Meshless Local Petrov-Galerkin (MLPG) “mixed collocation” method is applied to the problem of topology-optimization of elastic structures. In this paper, the topic of compliance minimization of elastic structures is pursued, and nodal design variables which represent nodal volume fractions at discretized nodes are adopted. A so-called nodal sensitivity filter is employed, to prevent the phenomenon of checkerboarding in numerical solutions to the topology-optimization problems. The example results presented in the paper demonstrate the suitability and versatility of the MLPG “mixed collocation” method, in implementing structural topology-optimization. Keyword: topology optimization, meshless method, MLPG, collocation, mixed method

[1]  M. Wang,et al.  On Hole Nucleation in Topology Optimization Using the Level Set Methods , 2007 .

[2]  S. Atluri,et al.  The Meshless Local Petrov-Galerkin (MLPG) Method: A Simple \& Less-costly Alternative to the Finite Element and Boundary Element Methods , 2002 .

[3]  Michael Yu Wang,et al.  A Geometric Deformation Constrained Level Set Method for Structural Shape and Topology Optimization , 2007 .

[4]  Ole Sigmund,et al.  On the Design of Compliant Mechanisms Using Topology Optimization , 1997 .

[5]  J. Petersson,et al.  Numerical instabilities in topology optimization: A survey on procedures dealing with checkerboards, mesh-dependencies and local minima , 1998 .

[6]  M. Wang,et al.  Structural Shape and Topology Optimization Using an Implicit Free Boundary Parametrization Method , 2006 .

[7]  Satya N. Atluri,et al.  Meshless Local Petrov-Galerkin (MLPG) Mixed Collocation Method For Elasticity Problems , 2006 .

[8]  Giorgio Chiandussi,et al.  Topology optimisation of an automotive component without final volume constraint specification , 2004 .

[9]  S. Atluri,et al.  The meshless local Petrov-Galerkin (MLPG) method , 2002 .

[10]  M. Wang,et al.  A Hybrid Sensitivity Filtering Method for Topology Optimization , 2008 .

[11]  James K. Guest,et al.  Achieving minimum length scale in topology optimization using nodal design variables and projection functions , 2004 .

[12]  Ole Sigmund,et al.  A 99 line topology optimization code written in Matlab , 2001 .

[13]  Kumar Vemaganti,et al.  Parallel methods for optimality criteria-based topology optimization , 2005 .

[14]  Niels Olhoff,et al.  Topology optimization of continuum structures: A review* , 2001 .

[15]  M. Bendsøe Optimal shape design as a material distribution problem , 1989 .

[16]  M. Bendsøe,et al.  Generating optimal topologies in structural design using a homogenization method , 1988 .

[17]  Michael Yu Wang,et al.  An Unconditionally Time-Stable Level Set Method and its Application to Shape and Topology Optimization , 2007 .

[18]  A. Cisilino,et al.  Topology Optimization of 2D Potential Problems Using Boundary Elements , 2006 .

[19]  Peter Horst,et al.  Multilevel optimization in aircraft structural design evaluation , 2008 .

[20]  J. Mackerle Topology and shape optimization of structures using FEM and BEM: a bibliography (1999-2001) , 2003 .

[21]  S. Atluri,et al.  A new Meshless Local Petrov-Galerkin (MLPG) approach in computational mechanics , 1998 .

[22]  O. Sigmund Materials with prescribed constitutive parameters: An inverse homogenization problem , 1994 .

[23]  S. Atluri The meshless method (MLPG) for domain & BIE discretizations , 2004 .

[24]  M. Bendsøe,et al.  A topological derivative method for topology optimization , 2007 .

[25]  M. Zhou,et al.  The COC algorithm, Part II: Topological, geometrical and generalized shape optimization , 1991 .