Experimental evidence of a chaotic region in a neural pacemaker

Abstract In this Letter, we report the finding of period-adding scenarios with chaos in firing patterns, observed in biological experiments on a neural pacemaker, with fixed extra-cellular potassium concentration at different levels and taken extra-cellular calcium concentration as the bifurcation parameter. The experimental bifurcations in the two-dimensional parameter space demonstrate the existence of a chaotic region interwoven with the periodic region thereby forming a period-adding sequence with chaos. The behavior of the pacemaker in this region is qualitatively similar to that of the Hindmarsh–Rose neuron model in a well-known comb-shaped chaotic region in two-dimensional parameter spaces.

[1]  Marco Storace,et al.  Experimental bifurcation diagram of a circuit-implemented neuron model , 2010 .

[2]  Zhuoqin Yang,et al.  Dynamics of firing patterns, synchronization and resonances in neuronal electrical activities: experiments and analysis , 2008 .

[3]  M. Rosenblum,et al.  Controlling synchronization in an ensemble of globally coupled oscillators. , 2004, Physical review letters.

[4]  Huaguang Gu,et al.  Experimental observation of the stochastic bursting caused by coherence resonance in a neural pacemaker , 2002, Neuroreport.

[5]  R. Genesio,et al.  On the dynamics of chaotic spiking-bursting transition in the Hindmarsh-Rose neuron. , 2009, Chaos.

[6]  Frank Moss,et al.  Homoclinic bifurcation in a Hodgkin-Huxley model of thermally sensitive neurons. , 2000, Chaos.

[7]  Alan R. Champneys,et al.  Codimension-Two Homoclinic Bifurcations Underlying Spike Adding in the Hindmarsh-Rose Burster , 2011, SIAM J. Appl. Dyn. Syst..

[8]  Frank Moss,et al.  Low-Dimensional Dynamics in Sensory Biology 1: Thermally Sensitive Electroreceptors of the Catfish , 1997, Journal of Computational Neuroscience.

[9]  Mingzhou Ding,et al.  Transitions to synchrony in coupled bursting neurons. , 2004, Physical review letters.

[10]  Eli Eliav,et al.  Abnormal discharge originates at the site of nerve injury in experimental constriction neuropathy (CCI) in the rat , 1996, Pain.

[11]  Xiao-Jing Wang,et al.  Genesis of bursting oscillations in the Hindmarsh-Rose model and homoclinicity to a chaotic saddle , 1993 .

[12]  Huaguang Gu,et al.  Dynamics of period-doubling bifurcation to chaos in the spontaneous neural firing patterns , 2011, Cognitive Neurodynamics.

[13]  J. M. Gonzalez-Miranda,et al.  Observation of a continuous interior crisis in the Hindmarsh-Rose neuron model. , 2003, Chaos.

[14]  Ren Wei,et al.  Two Different Bifurcation Scenarios in Neural Firing Rhythms Discovered in Biological Experiments by Adjusting Two Parameters , 2008 .

[15]  Martin Hasler,et al.  Synchronization of bursting neurons: what matters in the network topology. , 2005, Physical review letters.

[16]  Paulo C. Rech Dynamics in the Parameter Space of a Neuron Model , 2012 .

[17]  Enno de Lange,et al.  The Hindmarsh-Rose neuron model: bifurcation analysis and piecewise-linear approximations. , 2008, Chaos.

[18]  Martin Hasler,et al.  Predicting single spikes and spike patterns with the Hindmarsh–Rose model , 2008, Biological Cybernetics.

[19]  Frank Moss,et al.  Noise-induced precursors of tonic-to-bursting transitions in hypothalamic neurons and in a conductance-based model. , 2011, Chaos.

[20]  Andrey Shilnikov,et al.  Parameter-sweeping techniques for temporal dynamics of neuronal systems: case study of Hindmarsh-Rose model , 2011, Journal of mathematical neuroscience.

[21]  Paulo C. Rech,et al.  Dynamics of a neuron model in different two-dimensional parameter-spaces , 2011 .

[22]  Alessandro Torcini,et al.  Dynamical phases of the Hindmarsh-Rose neuronal model: studies of the transition from bursting to spiking chaos. , 2007, Chaos.

[23]  Qishao Lu,et al.  Integer multiple spiking in neuronal pacemakers without external periodic stimulation , 2001 .

[24]  J. M. Gonzalez-Miranda Complex bifurcation Structures in the Hindmarsh-rose Neuron Model , 2007, Int. J. Bifurc. Chaos.

[25]  Arun V. Holden,et al.  Bifurcations, burstings, chaos and crises in the Rose-Hindmarsh model for neuronal activity , 1993 .

[26]  J. Hindmarsh,et al.  A model of neuronal bursting using three coupled first order differential equations , 1984, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[27]  Arun V. Holden,et al.  From simple to complex oscillatory behaviour via intermittent chaos in the Rose-Hindmarsh model for neuronal activity , 1992 .

[28]  Gary J. Bennett,et al.  A peripheral mononeuropathy in rat that produces disorders of pain sensation like those seen in man , 1988, Pain.

[29]  A. Faisal,et al.  Noise in the nervous system , 2008, Nature Reviews Neuroscience.

[30]  D. Terman,et al.  The transition from bursting to continuous spiking in excitable membrane models , 1992 .

[31]  Andrey Shilnikov,et al.  Methods of the Qualitative Theory for the Hindmarsh-rose Model: a Case Study - a Tutorial , 2008, Int. J. Bifurc. Chaos.

[32]  Li Li,et al.  Dynamics of autonomous stochastic resonance in neural period adding bifurcation scenarios , 2003 .

[33]  J. M. Gonzalez-Miranda,et al.  Block structured dynamics and neuronal coding. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.