Hybrid approach to the ion drag force

A detailed calculation of the ion drag force acting on a single grain in a collisionless Maxwellian plasma with an arbitrary velocity of the ion flow is carried out. The traditional binary collision approach to the problem is combined with the linear kinetic formalism. It is shown that for a pointlike particle the binary collision approach yields correct results provided that the effective plasma screening length is chosen appropriately. The correct choice follows from the self-consistent kinetic theory. On the other hand, the binary collision approach accounts consistently for the effects of finite grain size and grain charging. Taking these effects into account an expression for the ion drag force is obtained. Calculations are performed for a typical (exemplary) set of complex plasma parameters. The relevance for recent complex plasma experiments is briefly discussed.

[1]  T. Nitter Levitation of dust in rf and dc glow discharges , 1996 .

[2]  Chu,et al.  Direct observation of Coulomb crystals and liquids in strongly coupled rf dusty plasmas. , 1994, Physical review letters.

[3]  G. Cooper Shielding of Slow Test Particles in a Plasma , 1969 .

[4]  R. Liboff Transport Coefficients Determined Using the Shielded Coulomb Potential , 1959 .

[5]  R. H. Ritchie,et al.  Passage of Charged Particles through Plasma , 1955 .

[6]  Steinberg,et al.  Rigid and differential plasma crystal rotation induced by magnetic fields , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[7]  A. Gnedovets,et al.  Effect of particle charging on momentum and heat transfer from rarefied plasma flow , 1991 .

[8]  B. Liu,et al.  Radiation pressure and gas drag forces on a melamine-formaldehyde microsphere in a dusty plasma , 2003 .

[9]  S. Khrapak,et al.  Low-frequency waves in collisional complex plasmas with an ion drift , 2003 .

[10]  N. Dangelo Dusty plasma ionization instability with ion drag , 1998 .

[11]  C. Toepffer,et al.  Energy loss of ions in a magnetized plasma: conformity between linear response and binary collision treatments. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[12]  J. Goree,et al.  Long-range attractive and repulsive forces in a two-dimensional complex (dusty) plasma. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  J. Goree,et al.  Condensed Plasmas under Microgravity , 1999 .

[14]  A. Piel,et al.  Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas , 2003 .

[15]  G. Morfill,et al.  The plasma condensation: Liquid and crystalline plasmas , 1999 .

[16]  G. Morfill,et al.  Scattering in the attractive Yukawa potential: application to the ion-drag force in complex plasmas , 2004, IEEE Transactions on Plasma Science.

[17]  L. Frost Effect of Variable Ionic Mobility on Ambipolar Diffusion , 1957 .

[18]  Kostya Ostrikov,et al.  Dynamic self-organization phenomena in complex ionized gas systems : new paradigms and technological aspects , 2004 .

[19]  Keller,et al.  Transport of dust particles in glow-discharge plasmas. , 1992, Physical review letters.

[20]  R. Quinn,et al.  Comment on “Measurement of the ion drag force on falling dust particles and its relation to the void formation in complex (dusty) plasmas” [Phys. Plasmas 10, 1278 (2003)] , 2003 .

[21]  F. Peeters,et al.  Negative ion-drag force in a plasma of gas discharge , 2004, IEEE Transactions on Plasma Science.

[22]  G. Joyce,et al.  Force on a charged test particle in a collisional flowing plasma. , 2004, Physical review letters.

[23]  G. Morfill,et al.  Ion drag force in complex plasmas. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  P. S. Epstein,et al.  On the Resistance Experienced by Spheres in their Motion through Gases , 1924 .

[25]  Meyer-ter-Vehn,et al.  Energy loss of heavy ions in dense plasma. I. Linear and nonlinear Vlasov theory for the stopping power. , 1991, Physical review. A, Atomic, molecular, and optical physics.

[26]  G. Morfill,et al.  Kinetic approach for the ion drag force in a collisional plasma. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[27]  Y. Hayashi Structure of a Three-Dimensional Coulomb Crystal in a Fine-Particle Plasma , 1999 .

[28]  G. Morfill,et al.  Momentum transfer in complex plasmas. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[29]  G. Morfill,et al.  Dusty plasmas in a constant electric field: role of the electron drag force. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[30]  J. Goree,et al.  Theory of dust voids in plasmas. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[31]  G. Joyce,et al.  Inverse third power law for the shielding of test particles. , 1968 .

[32]  E. Thomas,et al.  Probe induced voids in a dusty plasma , 2004 .

[33]  Vladimirov,et al.  Equilibrium and levitation of dust in a collisional plasma with ionization , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[34]  S. Hu,et al.  Nonlinear theory of void formation in colloidal plasmas. , 2003 .

[35]  O. Ishihara,et al.  Rotation of a two-dimensional Coulomb cluster in a magnetic field. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[36]  A. Ivlev,et al.  Ion drag force in dusty plasmas , 2004 .

[37]  N. Sato,et al.  Rotation in collisional strongly coupled dusty plasmas in a magnetic field , 2002 .

[38]  J. Goree,et al.  Plasma crystal: Coulomb crystallization in a dusty plasma. , 1994, Physical review letters.

[39]  A. F. Aleksandrov,et al.  Principles of plasma electrodynamics , 1978 .

[40]  G. Morfill,et al.  Weakly dissipative dust-ion-acoustic solitons. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[41]  Ian H. Hutchinson,et al.  Ion collection by a sphere in a flowing plasma: 3. Floating potential and drag force , 2004 .

[42]  V. Tsytovich Dust plasma crystals, drops, and clouds , 1997 .

[43]  A. Piel,et al.  Measurements of the ion drag force on micrometer sized particles in the double plasma device DODO , 2004, IEEE Transactions on Plasma Science.

[44]  E. Whipple,et al.  Potentials of surfaces in space , 1981 .

[45]  R. Schneider,et al.  Rotating dust ring in an RF discharge coupled with a dc-magnetron sputter source. Experiment and simulation , 2004 .

[46]  A. Piel,et al.  Dust-free regions around Langmuir probes in complex plasmas under microgravity. , 2004, Physical review letters.

[47]  A. Piel,et al.  Dynamical processes in complex plasmas , 2002 .

[48]  Burton D. Fried,et al.  The Plasma Dispersion Function , 1961 .

[49]  T. Trottenberg,et al.  Experimental determination of the charge on dust particles forming Coulomb lattices , 1994 .

[50]  V. Schweigert Dielectric permittivity of a plasma in an external electric field , 2001 .

[51]  Fokker-Planck equation for Boltzmann-type and active particles: transfer probability approach. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[52]  R. Logan,et al.  Laser cathode ray tube operation at room temperature , 1984 .

[53]  D. Winske Wave drag due to dust acoustic waves in collisional dusty plasmas , 2004, IEEE Transactions on Plasma Science.

[54]  G. Morfill,et al.  Scattering in the attractive Yukawa potential in the limit of strong interaction. , 2003, Physical review letters.