Error analysis of fully discrete velocity-correction methods for incompressible flows

A fully discrete version of the velocity-correction method, proposed by Guermond and Shen (2003) for the time-dependent Navier-Stokes equations, is introduced and analyzed. It is shown that, when accounting for space discretization, additional consistency terms, which vanish when space is not discretized, have to be added to establish stability and optimal convergence. Error estimates are derived for both the standard version and the rotational version of the method. These error estimates are consistent with those by Guermond and Shen (2003) as far as time discretiztion is concerned and are optimal in space for finite elements satisfying the inf-sup condition.

[1]  Frans N. van de Vosse,et al.  An approximate projec-tion scheme for incompressible ow using spectral elements , 1996 .

[2]  Xiaofeng Yang,et al.  Error estimates for finite element approximations of consistent splitting schemes for incompressible flows , 2007 .

[3]  E Weinan,et al.  GAUGE METHOD FOR VISCOUS INCOMPRESSIBLE FLOWS , 2003 .

[4]  Jie Shen,et al.  On the error estimates for the rotational pressure-correction projection methods , 2003, Math. Comput..

[5]  S. Orszag,et al.  High-order splitting methods for the incompressible Navier-Stokes equations , 1991 .

[6]  Yvon Maday,et al.  UNIFORM INF–SUP CONDITIONS FOR THE SPECTRAL DISCRETIZATION OF THE STOKES PROBLEM , 1999 .

[7]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part II: Stability of solutions and error estimates uniform in time , 1986 .

[8]  K. Goda,et al.  A multistep technique with implicit difference schemes for calculating two- or three-dimensional cavity flows , 1979 .

[9]  A. Chorin Numerical Solution of the Navier-Stokes Equations* , 1989 .

[10]  R. Temam Sur l'approximation de la solution des équations de Navier-Stokes par la méthode des pas fractionnaires (II) , 1969 .

[11]  G. Karniadakis,et al.  Spectral/hp Element Methods for CFD , 1999 .

[12]  Jean-Luc Guermond,et al.  Some implementations of projection methods for Navier-Stokes equations , 1996 .

[13]  Jean-Luc Guermond,et al.  On the approximation of the unsteady Navier–Stokes equations by finite element projection methods , 1998, Numerische Mathematik.

[14]  P. Moin,et al.  Application of a Fractional-Step Method to Incompressible Navier-Stokes Equations , 1984 .

[15]  Jian‐Guo Liu,et al.  Projection method I: convergence and numerical boundary layers , 1995 .

[16]  Peter Schlattmann,et al.  Theory and Algorithms , 2009 .

[17]  Jie Shen,et al.  A new class of truly consistent splitting schemes for incompressible flows , 2003 .

[18]  J. Kan A second-order accurate pressure correction scheme for viscous incompressible flow , 1986 .

[19]  M. Minion,et al.  Accurate projection methods for the incompressible Navier—Stokes equations , 2001 .

[20]  Navier-Stokes equations,et al.  ON ERROR ESTIMATES OF PROJECTION METHODS FOR , 1992 .

[21]  Jean-Luc Guermond,et al.  Un résultat de convergence d'ordre deux en temps pour l'approximation des équations de Navier-Stokes par une technique de projection incrémentale , 1999 .

[22]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[23]  S. Orszag,et al.  Boundary conditions for incompressible flows , 1986 .

[24]  R. Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem. I : Regularity of solutions and second-order error estimates for spatial discretization , 1982 .

[25]  A. Prohl Projection and quasi-compressibility methods for solving the incompressible navier-stokes equations , 1997 .

[26]  Jie Shen,et al.  Velocity-Correction Projection Methods for Incompressible Flows , 2003, SIAM J. Numer. Anal..

[27]  Ricardo H. Nochetto,et al.  Error estimates for semi-discrete gauge methods for the Navier-Stokes equations , 2004, Math. Comput..

[28]  Jie Shen On error estimates of projection methods for Navier-Stokes equations: first-order schemes , 1992 .

[29]  Rolf Rannacher,et al.  Finite element approximation of the nonstationary Navier-Stokes problem, part III. Smoothing property and higher order error estimates for spatial discretization , 1988 .

[30]  Jie Shen,et al.  An overview of projection methods for incompressible flows , 2006 .

[31]  Hans Johnston,et al.  Accurate, stable and efficient Navier-Stokes solvers based on explicit treatment of the pressure term , 2004 .