Alloy-assisted deposition of three-dimensional arrays of atomic gold catalyst for crystal growth studies

Large-scale assembly of individual atoms over smooth surfaces is difficult to achieve. A configuration of an atom reservoir, in which individual atoms can be readily extracted, may successfully address this challenge. In this work, we demonstrate that a liquid gold–silicon alloy established in classical vapor–liquid–solid growth can deposit ordered and three-dimensional rings of isolated gold atoms over silicon nanowire sidewalls. We perform ab initio molecular dynamics simulation and unveil a surprising single atomic gold-catalyzed chemical etching of silicon. Experimental verification of this catalytic process in silicon nanowires yields dopant-dependent, massive and ordered 3D grooves with spacing down to ~5 nm. Finally, we use these grooves as self-labeled and ex situ markers to resolve several complex silicon growths, including the formation of nodes, kinks, scale-like interfaces, and curved backbones.Parallel patterning of atoms over a large surface would represent a major advance over current serial methods of single atom manipulation. Here, the authors explore a periodic instability from liquid alloy droplets for high-throughput atom printing.

[1]  R. S. Wagner,et al.  VAPOR‐LIQUID‐SOLID MECHANISM OF SINGLE CRYSTAL GROWTH , 1964 .

[2]  Robert C. Wolpert,et al.  A Review of the , 1985 .

[3]  Ming L. Yu,et al.  Doping reaction of PH3 and B2H6 with Si(100) , 1986 .

[4]  J. Banavar,et al.  Computer Simulation of Liquids , 1988 .

[5]  D. Eigler,et al.  Positioning single atoms with a scanning tunnelling microscope , 1990, Nature.

[6]  S. Prokes,et al.  Growth and energetics of Ga and Al chains on Si(112) , 1994 .

[7]  M. Shanahan Simple Theory of "Stick-Slip" Wetting Hysteresis , 1995 .

[8]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[9]  Kresse,et al.  Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. , 1996, Physical review. B, Condensed matter.

[10]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[11]  T. Dupont,et al.  Capillary flow as the cause of ring stains from dried liquid drops , 1997, Nature.

[12]  Charles M. Lieber,et al.  A laser ablation method for the synthesis of crystalline semiconductor nanowires , 1998, Science.

[13]  Dieter Isheim,et al.  Analysis of Three-dimensional Atom-probe Data by the Proximity Histogram , 2000, Microscopy and Microanalysis.

[14]  Xiuling Li,et al.  Metal-assisted chemical etching in HF/H2O2 produces porous silicon , 2000 .

[15]  Saw-Wai Hla,et al.  STM control of chemical reaction: single-molecule synthesis. , 2003, Annual review of physical chemistry.

[16]  Joshua E. Goldberger,et al.  SEMICONDUCTOR NANOWIRES AND NANOTUBES , 2004 .

[17]  J. Tersoff,et al.  Sawtooth faceting in silicon nanowires. , 2005, Physical review letters.

[18]  Yong Ding,et al.  Conversion of Zinc Oxide Nanobelts into Superlattice-Structured Nanohelices , 2005, Science.

[19]  Wei Lu,et al.  TOPICAL REVIEW: Semiconductor nanowires , 2006 .

[20]  Ferdi Schüth,et al.  Nanocasting: A Versatile Strategy for Creating Nanostructured Porous Materials , 2009 .

[21]  Charles M Lieber,et al.  Semiconductor nanowires , 2006 .

[22]  Stefan Grimme,et al.  Semiempirical GGA‐type density functional constructed with a long‐range dispersion correction , 2006, J. Comput. Chem..

[23]  A. Majumdar,et al.  Enhanced thermoelectric performance of rough silicon nanowires , 2008, Nature.

[24]  Elias Vlieg,et al.  Twinning superlattices in indium phosphide nanowires , 2008, Nature.

[25]  Peng Wang,et al.  High-resolution detection of Au catalyst atoms in Si nanowires. , 2008, Nature nanotechnology.

[26]  F. Ross,et al.  Au stabilization and coverage of sawtooth facets on Si nanowires grown by vapor-liquid-solid epitaxy. , 2008, Nano letters.

[27]  P. Gentile,et al.  Control of gold surface diffusion on si nanowires. , 2008, Nano letters.

[28]  Bozhi Tian,et al.  Single crystalline kinked semiconductor nanowire superstructures , 2009, Nature nanotechnology.

[29]  X. Duan,et al.  Electrically conductive and optically active porous silicon nanowires. , 2009, Nano letters.

[30]  Peter W Voorhees,et al.  Direct measurement of dopant distribution in an individual vapour-liquid-solid nanowire. , 2009, Nature nanotechnology.

[31]  Seizo Morita,et al.  Atomic force microscopy as a tool for atom manipulation. , 2009, Nature nanotechnology.

[32]  Jinlin Huang,et al.  Diameter-dependent dopant location in silicon and germanium nanowires , 2009, Proceedings of the National Academy of Sciences.

[33]  J. Tersoff,et al.  From droplets to nanowires: dynamics of vapor-liquid-solid growth. , 2009, Physical review letters.

[34]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[35]  H. Riel,et al.  Doping limits of grown in situ doped silicon nanowires using phosphine. , 2009, Nano letters.

[36]  Radius selection and droplet unpinning in vapor-liquid-solid-grown nanowires , 2010 .

[37]  Prashanth Madras,et al.  Spreading of liquid AuSi on vapor-liquid-solid-grown Si nanowires. , 2010, Nano letters.

[38]  F. Ross Controlling nanowire structures through real time growth studies , 2010 .

[39]  Zhipeng Huang,et al.  Metal‐Assisted Chemical Etching of Silicon: A Review , 2011, Advanced materials.

[40]  S. Senz,et al.  Atomically smooth p-doped silicon nanowires catalyzed by aluminum at low temperature. , 2011, ACS nano.

[41]  J. Tersoff,et al.  Elementary processes in nanowire growth. , 2011, Nano letters.

[42]  S. Kodambaka,et al.  Periodically changing morphology of the growth interface in Si, Ge, and GaP nanowires. , 2011, Physical review letters.

[43]  S. Hofmann,et al.  Cyclic Supersaturation and Triple Phase Boundary Dynamics in Germanium Nanowire Growth , 2011 .

[44]  P. Voorhees,et al.  Catalyst incorporation at defects during nanowire growth. , 2012, Nano letters.

[45]  David J. Smith,et al.  Guided VLS growth of epitaxial lateral Si nanowires. , 2013, Nano letters.

[46]  S. Senz,et al.  Colossal injection of catalyst atoms into silicon nanowires , 2013, Nature.

[47]  M. Chi,et al.  Rational defect introduction in silicon nanowires. , 2013, Nano letters.

[48]  Erik M. Grumstrup,et al.  Synthetically encoding 10 nm morphology in silicon nanowires. , 2013, Nano letters.

[49]  S. Kodambaka,et al.  Strategies to control morphology in hybrid group III-V/group IV heterostructure nanowires. , 2013, Nano letters.

[50]  Peter W Voorhees,et al.  Identification of an intrinsic source of doping inhomogeneity in vapor-liquid-solid-grown nanowires. , 2013, Nano letters.

[51]  S. Kodambaka,et al.  Au transport in catalyst coarsening and Si nanowire formation. , 2014, Nano letters.

[52]  Xing Zhang,et al.  Encoding abrupt and uniform dopant profiles in vapor-liquid-solid nanowires by suppressing the reservoir effect of the liquid catalyst. , 2014, ACS nano.

[53]  M. Chi,et al.  Interplay between defect propagation and surface hydrogen in silicon nanowire kinking superstructures. , 2014, ACS nano.

[54]  H. Erbil,et al.  Comments on the Energy Barrier Calculations during “Stick–Slip” Behavior of Evaporating Droplets Containing Nanoparticles , 2014 .

[55]  G. Patriarche,et al.  Incorporation and redistribution of impurities into silicon nanowires during metal-particle-assisted growth , 2014, Nature Communications.

[56]  Charles M Lieber,et al.  Plateau-Rayleigh crystal growth of periodic shells on one-dimensional substrates. , 2015, Nature nanotechnology.

[57]  D. Zhao,et al.  Growth of Single-Layered Two-Dimensional Mesoporous Polymer/Carbon Films by Self-Assembly of Monomicelles at the Interfaces of Various Substrates. , 2015, Angewandte Chemie.

[58]  Bozhi Tian,et al.  Atomic gold–enabled three-dimensional lithography for silicon mesostructures , 2015, Science.

[59]  Yi Shi,et al.  Engineering island-chain silicon nanowires via a droplet mediated Plateau-Rayleigh transformation , 2016, Nature Communications.

[60]  Benjamin Pfaff,et al.  Diffusion In Silicon 10 Years Of Research , 2016 .

[61]  J. Arbiol,et al.  Surface Hydrogen Enables Subeutectic Vapor-Liquid-Solid Semiconductor Nanowire Growth. , 2016, Nano letters.

[62]  D. J. Hill,et al.  Designing Morphology in Epitaxial Silicon Nanowires: The Role of Gold, Surface Chemistry, and Phosphorus Doping. , 2017, ACS nano.