Homotopy types of strict 3-groupoids

We look at strict $n$-groupoids and show that if $\Re$ is any realization functor from the category of strict $n$-groupoids to the category of spaces satisfying a minimal property of compatibility with homotopy groups, then there is no strict $n$-groupoid $G$ such that $\Re (G)$ is the $n$-type of $S^2$ (for $n\geq 3$). At the end we speculate on how one might fix this problem by introducing a notion of ``snucategory'', a strictly associative $n$-category with only weak units.

[1]  L. Lewis Is there a convenient category of spectra , 1991 .

[2]  J. Baez,et al.  Higher dimensional algebra and topological quantum field theory , 1995, q-alg/9503002.

[3]  P. J. Higgins,et al.  The classifying space of a crossed complex , 1991, Mathematical Proceedings of the Cambridge Philosophical Society.

[4]  N. D. Gilbert,et al.  Algebraic Models of 3‐Types and Automorphism Structures for Crossed Modules , 1989 .

[5]  W. Dwyer,et al.  Calculating simplicial localizations , 1980 .

[6]  Michael Batanin,et al.  Monoidal Globular Categories As a Natural Environment for the Theory of Weakn-Categories☆ , 1998 .

[7]  P. T. Johnstone,et al.  BASIC CONCEPTS OF ENRICHED CATEGORY THEORY (London Mathematical Society Lecture Note Series, 64) , 1983 .

[8]  COMPUTING HOMOTOPY TYPES USING CROSSED N-CUBES OF GROUPS ∗ , 2001, math/0109091.

[9]  W. Dwyer,et al.  Simplicial localizations of categories , 1980 .

[10]  Peter Gabriel,et al.  Calculus of Fractions and Homotopy Theory , 1967 .

[11]  P. J. Higgins,et al.  The equivalence of $\infty$-groupoids and crossed complexes , 1981 .

[12]  Ross Street,et al.  The algebra of oriented simplexes , 1987 .

[13]  H. Baues Combinatorial homotopy and 4-dimensional complexes , 1990 .

[14]  W. Dwyer,et al.  Function complexes in homotopical algebra , 1980 .

[15]  Ross Street,et al.  Coherence of tricategories , 1995 .

[16]  Zouhair Tamsamani,et al.  Sur des notions de n-catégorie et n-groupoi͏̈de non strictes via des ensembles multi-simpliciaux , 1996 .

[17]  James Dolan,et al.  Higher-Dimensional Algebra III: n-Categories and the Algebra of Opetopes , 1997 .