Novel Tensor Product Models for Automatic Transmission System Control

This paper discusses novel tensor product (TP) models for the control of two complex components of the vehicle automatic transmission systems, namely the drive line without clutch and, the valve-clutch. The TP models are obtained by a transformation of the linear parameter-varying models derived from the first principle nonlinear mathematical models of the controlled processes. Experimental results validate the performance of the proposed TP models.

[1]  Yuanwei Jing,et al.  A Q-learning model-independent flow controller for high-speed networks , 2009, 2009 American Control Conference.

[2]  Milos Manic,et al.  Uncertainty-Robust Design of Interval Type-2 Fuzzy Logic Controller for Delta Parallel Robot , 2011, IEEE Transactions on Industrial Informatics.

[3]  Radu-Emil Precup,et al.  A survey on industrial applications of fuzzy control , 2011, Comput. Ind..

[4]  Michela Robba,et al.  A Dynamic Decision Model for the Real-Time Control of Hybrid Renewable Energy Production Systems , 2010, IEEE Systems Journal.

[5]  James M. Tien,et al.  Services: A System's Perspective , 2008, IEEE Systems Journal.

[6]  Yannis A. Phillis,et al.  Sustainability Assessment of Nations and Related Decision Making Using Fuzzy Logic , 2008, IEEE Systems Journal.

[7]  A. Rovid,et al.  LPV type model of deformational force in vehicle collisions , 2009, 2009 IEEE International Conference on Computational Cybernetics (ICCC).

[8]  Keith W. Hipel,et al.  On Achieving Fairness in the Allocation of Scarce Resources: Measurable Principles and Multiple Objective Optimization Approaches , 2007, IEEE Systems Journal.

[9]  Mohammad S. Obaidat,et al.  A Counter Disassociation Mechanism (CDM) for Wireless LANs and its Performance Simulation Analysis , 2010, IEEE Systems Journal.

[10]  Teresa Orlowska-Kowalska,et al.  Application of the OBD method for optimization of neural state variable estimators of the two-mass drive system , 2009, Neurocomputing.

[11]  Yuanqing Xia,et al.  Robust Adaptive Sliding-Mode Control for Fuzzy Systems With Mismatched Uncertainties , 2010, IEEE Transactions on Fuzzy Systems.

[12]  Joos Vandewalle,et al.  A Multilinear Singular Value Decomposition , 2000, SIAM J. Matrix Anal. Appl..

[13]  A.M. Madni,et al.  Models for Cost-Benefit Analysis of RFID Implementations in Retail Stores , 2007, IEEE Systems Journal.

[14]  Kaoru Hirota,et al.  Integrated Decision-Making System for Robot Soccer , 2011, J. Adv. Comput. Intell. Intell. Informatics.

[15]  Keith W. Hipel,et al.  Fuzzy Real Options for Risky Project Evaluation Using Least Squares Monte-Carlo Simulation , 2011, IEEE Systems Journal.

[16]  Corneliu Lazar,et al.  Cascade based control of a drivetrain with backlash , 2010, 2010 12th International Conference on Optimization of Electrical and Electronic Equipment.

[17]  Manfred Morari,et al.  A hybrid approach to modelling, control and state estimation of mechanical systems with backlash , 2007, Int. J. Control.

[18]  Levente Kovács,et al.  Glucose-Insulin Control of Type1 Diabetic Patients in H2/Hinfinity Space Via Computer Algebra , 2007, AB.

[19]  B. Egardt,et al.  On powertrain oscillation damping using feedforward and LQ feedback control , 2005, Proceedings of 2005 IEEE Conference on Control Applications, 2005. CCA 2005..

[20]  Brian J. Sauser,et al.  System-of-Systems Engineering Management: A Review of Modern History and a Path Forward , 2008, IEEE Systems Journal.

[21]  Daniel Hladek,et al.  MULTI-ROBOT CONTROL SYSTEM FOR PURSUIT-EVASION PROBLEM , 2009 .

[22]  Peter Baranyi,et al.  TP tool - A MATLAB toolbox for TP model transformation , 2007 .

[23]  Luigi Fortuna,et al.  Effects of Long-Range Connections in Distributed Control of Collective Motion , 2007, Int. J. Bifurc. Chaos.

[24]  Istvan Harmati Urban Traffic Control and Path Planning for Vehicles in Game Theoretic Framework , 2007, RoMoCo.

[25]  Mo M. Jamshidi,et al.  Consensus Control for a System of Underwater Swarm Robots , 2010, IEEE Systems Journal.

[26]  Péter Gáspár,et al.  H℞ gain-scheduling based control of the heavy vehicle model, a TP model transformation based control , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).

[27]  Plamen P. Angelov,et al.  Evolving classification of agents’ behaviors: a general approach , 2010, Evol. Syst..

[28]  Shaocheng Tong,et al.  Fuzzy adaptive robust backstepping stabilization for SISO nonlinear systems with unknown virtual control direction , 2010, Inf. Sci..

[29]  P. Baranyi,et al.  Computational relaxed TP model transformation: restricting the computation to subspaces of the dynamic model , 2009 .

[30]  J Richalet,et al.  An approach to predictive control of multivariable time-delayed plant: stability and design issues. , 2004, ISA transactions.

[31]  Yutaka Hata,et al.  Human Health Care System of Systems , 2009, IEEE Systems Journal.

[32]  Delbert Tesar,et al.  Duty Cycle Analysis to Drive Intelligent Actuator Development , 2008, IEEE Systems Journal.

[33]  BRATISLAV DANKOVIĆ,et al.  A Class of Almost Orthogonal Filters , 2009, J. Circuits Syst. Comput..

[34]  Beatrice Lazzerini,et al.  Analyzing Risk Impact Factors Using Extended Fuzzy Cognitive Maps , 2011, IEEE Systems Journal.

[35]  Federico Silvestro,et al.  Short-Term Scheduling and Control of Active Distribution Systems With High Penetration of Renewable Resources , 2010, IEEE Systems Journal.

[36]  Jyh-Horng Chou,et al.  Design of Robust Quadratic Finite-Horizon Optimal Static Output Feedback Controllers for Linear Uncertain Singular Systems , 2009, IEEE Systems Journal.

[37]  Azad M. Madni,et al.  Hierarchical Aggregation and Intelligent Monitoring and Control in Fault-Tolerant Wireless Sensor Networks , 2007, IEEE Systems Journal.

[38]  Peter Baranyi,et al.  Approximation and complexity trade‐off by TP model transformation in controller design: A case study of the TORA system , 2010 .

[39]  Jay S. Pearlman,et al.  A System-of-Systems Engineering GEOSS: Architectural Approach , 2008, IEEE Systems Journal.

[40]  Okyay Kaynak,et al.  Computing Gradient Vector and Jacobian Matrix in Arbitrarily Connected Neural Networks , 2008, IEEE Transactions on Industrial Electronics.

[41]  Patricia Gróf,et al.  Determination of the stability parameter space of a two dimensional aeroelastic system, a TP model-based approach , 2010, 2010 IEEE 14th International Conference on Intelligent Engineering Systems.

[42]  Alessandro Rizzo,et al.  Kriging metamodel management in the design optimization of a CNG injection system , 2009, Math. Comput. Simul..

[43]  Igor Skrjanc,et al.  Interval Fuzzy Model Identification Using$l_infty$-Norm , 2005, IEEE Transactions on Fuzzy Systems.

[44]  Daniel DeLaurentis,et al.  Multi-Objective Optimization Models for Improved Decision-Support in Humanitarian Infrastructure Project Selection Problems , 2008, IEEE Systems Journal.

[45]  Zsolt Csaba Johanyák,et al.  Fuzzy Rule Interpolation Based on Polar Cuts , 2006 .

[46]  József K. Tar,et al.  Fuzzy Control System Performance Enhancement by Iterative Learning Control , 2008, IEEE Transactions on Industrial Electronics.

[47]  Andrew P. Sage,et al.  A Case for an International Consortium on System-of-Systems Engineering , 2007, IEEE Systems Journal.

[48]  Peter Korondi,et al.  Tensor Product model transformation based friction compensation of a mechatronic system , 2010, 2010 IEEE 14th International Conference on Intelligent Engineering Systems.

[49]  Alessandro Rizzo,et al.  Nonlinear modelling and control of a common rail injection system for diesel engines , 2007 .

[50]  Claudia-Adina Dragos,et al.  Tensor product-based real-time control of the liquid levels in a three tank system , 2010, 2010 IEEE/ASME International Conference on Advanced Intelligent Mechatronics.

[51]  Corneliu Lazar,et al.  Dynamic Simulator of a Wet Plate Clutch System for Automatic Transmission , 2010 .

[52]  Imre J. Rudas,et al.  Modeling and Problem Solving Techniques for Engineers , 2004 .

[53]  Z. Johanyák Student Evaluation Based On Fuzzy Rule Interpolation , 2010 .

[54]  Péter Baranyi,et al.  TP model transformation as a way to LMI-based controller design , 2004, IEEE Transactions on Industrial Electronics.

[55]  Nikola Kasabov,et al.  Quantum-inspired Particle Swarm Optimisation for Integrated Feature and Parameter Optimisation of Evolving Spiking Neural Networks , 2011 .

[56]  Hideki Hashimoto,et al.  Trajectory Tracking by TP Model Transformation: Case Study of a Benchmark Problem , 2007, IEEE Transactions on Industrial Electronics.

[57]  W. Pedrycz,et al.  A fuzzy ensemble of parallel polynomial neural networks with information granules formed by fuzzy clustering , 2010, Knowl. Based Syst..

[58]  Robert Babuska,et al.  Perspectives of fuzzy systems and control , 2005, Fuzzy Sets Syst..

[59]  Rodolfo E. Haber,et al.  Optimal fuzzy control system using the cross-entropy method. A case study of a drilling process , 2010, Inf. Sci..

[60]  Kazuo Tanaka,et al.  Parallel Distributed Compensation Based Stabilization of A 3-DOF RC Helicopter: A Tensor Product Transformation Based Approach , 2009, J. Adv. Comput. Intell. Intell. Informatics.

[61]  Péter Várlaki,et al.  HOSVD Based Canonical Form for Polytopic Models of Dynamic Systems , 2009, J. Adv. Comput. Intell. Intell. Informatics.

[62]  Adedeji B. Badiru,et al.  Half-Life Theory of Learning Curves for System Performance Analysis , 2009, IEEE Systems Journal.

[63]  Péter Baranyi,et al.  TP model transformation based controller design for the parallel-type double inverted pendulum , 2008, 2008 IEEE International Conference on Fuzzy Systems (IEEE World Congress on Computational Intelligence).