How to Perform FMO Calculation in Drug Discovery

[1]  Steven M. Bachrach,et al.  Population Analysis and Electron Densities from Quantum Mechanics , 2007 .

[2]  Kazuo Kitaura,et al.  A combined effective fragment potential-fragment molecular orbital method. II. Analytic gradient and application to the geometry optimization of solvated tetraglycine and chignolin. , 2011, The Journal of chemical physics.

[3]  Kazuo Kitaura,et al.  The three-body fragment molecular orbital method for accurate calculations of large systems , 2006 .

[4]  Kaori Fukuzawa,et al.  Hydration of ligands of influenza virus neuraminidase studied by the fragment molecular orbital method. , 2016, Journal of molecular graphics & modelling.

[5]  Yuri Alexeev,et al.  Geometry Optimization of the Active Site of a Large System with the Fragment Molecular Orbital Method , 2011 .

[6]  Kaori Fukuzawa,et al.  Fragment molecular orbital method: use of approximate electrostatic potential , 2002 .

[7]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[8]  A. Heifetz,et al.  Quantum Mechanics in Drug Discovery , 2020 .

[9]  R. S. Mulliken Electronic Population Analysis on LCAO–MO Molecular Wave Functions. I , 1955 .

[10]  Barry Honig,et al.  Calculating total electrostatic energies with the nonlinear Poisson-Boltzmann equation , 1990 .

[11]  Kaori Fukuzawa,et al.  Towards good correlation between fragment molecular orbital interaction energies and experimental IC50 for ligand binding: A case study of p38 MAP kinase , 2018, Computational and structural biotechnology journal.

[12]  Kaori Fukuzawa,et al.  Development of the four-body corrected fragment molecular orbital (FMO4) method , 2012 .

[13]  Junwei Zhang,et al.  VISCANA: Visualized Cluster Analysis of Protein-Ligand Interaction Based on the ab Initio Fragment Molecular Orbital Method for Virtual Ligand Screening , 2006, J. Chem. Inf. Model..

[14]  C. Breneman,et al.  Determining atom‐centered monopoles from molecular electrostatic potentials. The need for high sampling density in formamide conformational analysis , 1990 .

[15]  K. Kitaura,et al.  Systematic study of the embedding potential description in the fragment molecular orbital method. , 2010, The journal of physical chemistry. A.

[16]  Yuto Komeiji,et al.  Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. , 2014, Physical chemistry chemical physics : PCCP.

[17]  Kaori Fukuzawa,et al.  Application of the fragment molecular orbital method for determination of atomic charges on polypeptides. II. Towards an improvement of force fields used for classical molecular dynamics simulations , 2009 .

[18]  Kaori Fukuzawa,et al.  Partial geometry optimization with FMO-MP2 gradient: Application to TrpCage , 2012 .

[19]  Kohji Itoh,et al.  Correlation Analyses on Binding Affinity of Sialic Acid Analogues and Anti-Influenza Drugs with Human Neuraminidase Using ab Initio MO Calculations on Their Complex Structures - LERE-QSAR Analysis (IV) , 2011, J. Chem. Inf. Model..

[20]  Hiroshi Chuman,et al.  Correlation Analyses on Binding Affinity of Sialic Acid Analogues with Influenza Virus Neuraminidase-1 Using ab Initio MO Calculations on Their Complex Structures , 2010, J. Chem. Inf. Model..

[21]  Shigenori Tanaka,et al.  Incorporation of solvation effects into the fragment molecular orbital calculations with the Poisson–Boltzmann equation , 2010 .

[22]  Kazuo Kitaura,et al.  Pair interaction energy decomposition analysis , 2007, J. Comput. Chem..

[23]  T. Nakano,et al.  An application of fragment interaction analysis based on local MP2 , 2008 .

[24]  P. Kollman,et al.  Atomic charges derived from semiempirical methods , 1990 .

[25]  Kazuo Kitaura,et al.  Exploring chemistry with the fragment molecular orbital method. , 2012, Physical chemistry chemical physics : PCCP.

[26]  Umpei Nagashima,et al.  A parallelized integral-direct second-order Møller–Plesset perturbation theory method with a fragment molecular orbital scheme , 2004 .

[27]  Hui Li,et al.  The polarizable continuum model (PCM) interfaced with the fragment molecular orbital method (FMO) , 2006, J. Comput. Chem..

[28]  Kaori Fukuzawa,et al.  Molecular interactions between estrogen receptor and its ligand studied by the ab initio fragment molecular orbital method. , 2006, The journal of physical chemistry. B.

[29]  Shigenori Tanaka,et al.  Intra‐ and intermolecular interactions between cyclic‐AMP receptor protein and DNA: Ab initio fragment molecular orbital study , 2007, J. Comput. Chem..

[30]  K. Kitaura,et al.  The use of many-body expansions and geometry optimizations in fragment-based methods. , 2014, Accounts of chemical research.

[31]  T. Nakano,et al.  Fragment molecular orbital-based molecular dynamics (FMO-MD) simulations on hydrated Zn(II) ion , 2010 .

[32]  Yuri Alexeev,et al.  Importance of Three-Body Interactions in Molecular Dynamics Simulations of Water Demonstrated with the Fragment Molecular Orbital Method. , 2016, Journal of chemical theory and computation.

[33]  Kaori Fukuzawa,et al.  A configuration analysis for fragment interaction , 2005 .

[34]  Frank Weinhold,et al.  Natural bond orbital analysis of near‐Hartree–Fock water dimer , 1983 .

[35]  Kaori Fukuzawa,et al.  Accuracy of fragmentation in ab initio calculations of hydrated sodium cation , 2009 .

[36]  Takeshi Ishikawa,et al.  Partial energy gradient based on the fragment molecular orbital method: Application to geometry optimization , 2010 .

[37]  D. M. Ryan,et al.  Rational design of potent sialidase-based inhibitors of influenza virus replication , 1993, Nature.

[38]  Yutaka Akiyama,et al.  Fragment molecular orbital method: application to polypeptides , 2000 .

[39]  D. Fedorov,et al.  Molecular Electrostatic Potential and Electron Density of Large Systems in Solution Computed With the Fragment Molecular Orbital Method. , 2019, The journal of physical chemistry. A.

[40]  Kaori Fukuzawa,et al.  Charge clamps of lysines and hydrogen bonds play key roles in the mechanism to fix helix 12 in the agonist and antagonist positions of estrogen receptor α: intramolecular interactions studied by the ab initio fragment molecular orbital method. , 2014, The journal of physical chemistry. B.

[41]  P. Kollman,et al.  An approach to computing electrostatic charges for molecules , 1984 .

[42]  T. Nakano,et al.  Fragment interaction analysis based on local MP2 , 2007 .

[43]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[44]  Takeshi Ishikawa,et al.  Theoretical study of the prion protein based on the fragment molecular orbital method , 2009, J. Comput. Chem..

[45]  Kaori Fukuzawa,et al.  Explicit solvation of a single-stranded DNA, a binding protein, and their complex: a suitable protocol for fragment molecular orbital calculation , 2017 .

[46]  Yuji Mochizuki,et al.  Acceleration of fragment molecular orbital calculations with Cholesky decomposition approach , 2010 .

[47]  Masami Uebayasi,et al.  The fragment molecular orbital method for geometry optimizations of polypeptides and proteins. , 2007, The journal of physical chemistry. A.

[48]  Kaori Fukuzawa,et al.  Theoretical Analysis of Activity Cliffs among Benzofuranone-Class Pim1 Inhibitors Using the Fragment Molecular Orbital Method with Molecular Mechanics Poisson-Boltzmann Surface Area (FMO+MM-PBSA) Approach , 2017, J. Chem. Inf. Model..

[49]  D. Fedorov,et al.  Efficient Geometry Optimization of Large Molecular Systems in Solution Using the Fragment Molecular Orbital Method. , 2016, The journal of physical chemistry. A.

[50]  Kotoko Nakata,et al.  Ab initio quantum mechanical study of the binding energies of human estrogen receptor α with its ligands: An application of fragment molecular orbital method , 2005, J. Comput. Chem..

[51]  Yoshinobu Akinaga,et al.  Fragmentation at sp2 carbon atoms in fragment molecular orbital method , 2020, J. Comput. Chem..

[52]  Kazuo Kitaura,et al.  The Fragment Molecular Orbital Method: Practical Applications to Large Molecular Systems , 2009 .

[53]  Kaori Fukuzawa,et al.  Development of an automated fragment molecular orbital (FMO) calculation protocol toward construction of quantum mechanical calculation database for large biomolecules , 2019, Chem-Bio Informatics Journal.

[54]  Takeshi Ishikawa,et al.  Fragment molecular orbital calculations on large scale systems containing heavy metal atom , 2006 .

[55]  Yuichi Inadomi,et al.  DNA and estrogen receptor interaction revealed by fragment molecular orbital calculations. , 2007, The journal of physical chemistry. B.

[56]  Kaori Fukuzawa,et al.  Taking Water into Account with the Fragment Molecular Orbital Method. , 2020, Methods in molecular biology.

[57]  Malcolm E. Davis,et al.  Electrostatics in biomolecular structure and dynamics , 1990 .

[58]  Shintaro Iwasaki,et al.  The Translation Inhibitor Rocaglamide Targets a Bimolecular Cavity between eIF4A and Polypurine RNA. , 2019, Molecular cell.

[59]  F. Weinhold,et al.  Natural population analysis , 1985 .

[60]  Kaori Fukuzawa,et al.  Fragment Molecular Orbital Calculations with Implicit Solvent Based on the Poisson-Boltzmann Equation: II. Protein and Its Ligand-Binding System Studies. , 2018, The journal of physical chemistry. B.

[61]  J. Tomasi,et al.  Quantum mechanical continuum solvation models. , 2005, Chemical reviews.

[62]  Kaori Fukuzawa,et al.  Antigen–antibody interactions of influenza virus hemagglutinin revealed by the fragment molecular orbital calculation , 2011 .

[63]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[64]  Yuji Mochizuki,et al.  Large scale MP2 calculations with fragment molecular orbital scheme , 2004 .

[65]  Kaori Fukuzawa,et al.  Three- and four-body corrected fragment molecular orbital calculations with a novel subdividing fragmentation method applicable to structure-based drug design. , 2013, Journal of molecular graphics & modelling.

[66]  M. Taiji,et al.  Use of the Multilayer Fragment Molecular Orbital Method to Predict the Rank Order of Protein–Ligand Binding Affinities: A Case Study Using Tankyrase 2 Inhibitors , 2018, ACS omega.

[67]  Kaori Fukuzawa,et al.  Application of the fragment molecular orbital method for determination of atomic charges on polypeptides , 2007 .

[68]  Le Chang,et al.  Protein‐specific force field derived from the fragment molecular orbital method can improve protein–ligand binding interactions , 2013, J. Comput. Chem..

[69]  Yuto Komeiji,et al.  Visualization analysis of inter-fragment interaction energies of CRP-cAMP-DNA complex based on the fragment molecular orbital method. , 2007, Biophysical chemistry.

[70]  Shigenori Tanaka,et al.  Intra‐ and intermolecular interactions between cyclic‐AMP receptor protein and DNA: Ab initio fragment molecular orbital study , 2006, J. Comput. Chem..

[71]  Kaori Fukuzawa,et al.  Explicit solvation modulates intra- and inter-molecular interactions within DNA: Electronic aspects revealed by the ab initio fragment molecular orbital (FMO) method , 2015 .

[72]  D. Fedorov Analysis of solute-solvent interactions using the solvation model density combined with the fragment molecular orbital method , 2018, Chemical Physics Letters.