Better Confidence Intervals: The Double Bootstrap with No Pivot

The double bootstrap is an important advance in confidence interval generation because it converges faster than the already popular single bootstrap. Yet the usual double bootstrap requires a stable pivot that is not always available, e.g., when estimating flexibilities or substitution elasticities. A recently developed double bootstrap does not require a pivot. A Monte Carlo analysis with the Waugh data finds the double bootstrap achieves nominal coverage whereas the single bootstrap does not. A useful artifice dramatically decreases the computational time of the double bootstrap. Copyright 1998, Oxford University Press.

[1]  J. MacKinnon,et al.  Bootstrap tests: how many bootstraps? , 2000 .

[2]  Bruce D. McCullough,et al.  The Numerical Reliability of Econometric Software , 1999 .

[3]  J. MacKinnon,et al.  Bootstrap Testing in Nonlinear Models , 1999 .

[4]  Bruce D. McCullough,et al.  Econometric Software Reliability: EViews, LIMDEP, SHAZAM and TSP , 1999 .

[5]  Anthony C. Davison,et al.  Bootstrap Methods and Their Application , 1998 .

[6]  Bruce D. McCullough,et al.  Consistent forecast intervals when the forecast‐period exogenous variables are stochastic , 1996 .

[7]  H. Vinod Double bootstrap for shrinkage estimators , 1995 .

[8]  R. Tibshirani,et al.  An Introduction to the Bootstrap , 1995 .

[9]  James G. Booth,et al.  Monte Carlo approximation and the iterated bootstrap , 1994 .

[10]  H. Vinod,et al.  Implementing the single bootstrap: Some computational considerations , 1993 .

[11]  Catherine L. Kling,et al.  Estimating the Precision of Welfare Measures , 1991 .

[12]  Catherine L. Kling,et al.  Confidence Intervals for Elasticities and Flexibilities: Reevaluating the Ratios of Normals Case , 1990 .

[13]  Lori A. Thombs,et al.  Bootstrap Prediction Intervals for Autoregression , 1990 .

[14]  D. McMillen,et al.  Constructing Confidence Intervals Using the Bootstrap: An Application to a Multi-Product Cost Function , 1990 .

[15]  R. Beran Prepivoting to reduce level error of confidence sets , 1987 .

[16]  Thanasis Stengos,et al.  Bootstrapping Confidence Intervals: An Application to Forecasting the Supply of Pork , 1987 .

[17]  M. Veall Bootstrapping the Probability Distribution of Peak Electricity Demand , 1987 .

[18]  P. Hall On the Bootstrap and Confidence Intervals , 1986 .

[19]  G. J. Wells,et al.  Confidence Intervals for Elasticities and Flexibilities from Linear Equations , 1984 .

[20]  J. C. Hayya,et al.  A Note on the Ratio of Two Normally Distributed Variables , 1975 .

[21]  H. Vinod CONCAVE CONSUMPTION , EULER EQUATIONS AND INFERENCE WITH ESTIMATING FUNCTIONS , 1999 .

[22]  R. Beran Prediction in random coefficient regression , 1995 .

[23]  Sheng G. Shi Accurate and efficient double-bootstrap confidence limit method , 1992 .

[24]  M. Chavance [Jackknife and bootstrap]. , 1992, Revue d'epidemiologie et de sante publique.