Measuring the defect structure orientation of a single N V − ?> centre in diamond

The negatively charged nitrogen-vacancy ( N V − ?> ) centre in diamond has many exciting applications in quantum nano-metrology, including magnetometry, electrometry, thermometry and piezometry. Indeed, it is possible for a single N V − ?> centre to measure the complete three-dimensional vector of the local electric field or the position of a single fundamental charge in ambient conditions. However, in order to achieve such vector measurements, near complete knowledge of the orientation of the centreʼs defect structure is required. Here, we demonstrate an optically detected magnetic resonance (ODMR) technique employing rotations of static electric and magnetic fields that precisely determines the orientation of the centreʼs major and minor trigonal symmetry axes. Thus, our technique is an enabler of the centreʼs existing vector sensing applications and also motivates new applications in multi-axis rotation sensing, NV growth characterization and diamond crystallography.

[1]  F. Dolde,et al.  A Viewpoint on: Nanoscale Detection of a Single Fundamental Charge in Ambient Conditions Using the NV Center in Diamond , 2014 .

[2]  Neil B. Manson,et al.  Perfect alignment and preferential orientation of nitrogen-vacancy centers during chemical vapor deposition diamond growth on (111) surfaces , 2014, 1401.4106.

[3]  L. Hollenberg,et al.  Electronic properties and metrology applications of the diamond NV- center under pressure. , 2013, Physical review letters.

[4]  M. D. Lukin,et al.  Optical magnetic imaging of living cells , 2013, Nature.

[5]  P. Maurer,et al.  Nanometre-scale thermometry in a living cell , 2013, Nature.

[6]  D. Suter,et al.  High-precision nanoscale temperature sensing using single defects in diamond. , 2013, Nano letters.

[7]  Viatcheslav V. Dobrovitski,et al.  Supporting Information for “ Fluorescence thermometry enhanced by the quantum coherence of single spins in diamond ” , 2013 .

[8]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[9]  J. Meijer,et al.  Nuclear Magnetic Resonance Spectroscopy on a (5-Nanometer)3 Sample Volume , 2013, Science.

[10]  D. Rugar,et al.  Nanoscale Nuclear Magnetic Resonance with a Nitrogen-Vacancy Spin Sensor , 2013, Science.

[11]  Ronald L. Walsworth,et al.  Nanoscale magnetometry with NV centers in diamond , 2013 .

[12]  M. Schweikert,et al.  Magnetic spin imaging under ambient conditions with sub-cellular resolution , 2012, Nature Communications.

[13]  M. D. Lukin,et al.  Nanoscale magnetic imaging of a single electron spin under ambient conditions , 2012, Nature Physics.

[14]  J. Manton,et al.  High spatial and temporal resolution wide-field imaging of neuron activity using quantum NV-diamond , 2012, Scientific Reports.

[15]  Paola Cappellaro,et al.  Stable three-axis nuclear-spin gyroscope in diamond , 2012, 1205.1494.

[16]  D. Maclaurin,et al.  Measurable quantum geometric phase from a rotating single spin. , 2012, Physical review letters.

[17]  M. Lukin,et al.  Enhanced solid-state multispin metrology using dynamical decoupling , 2012, 1201.5686.

[18]  Persistence of Single Spin Coherence above 600K in Diamond , 2012 .

[19]  D. D. Awschalom,et al.  Measurement and Control of Single Nitrogen-Vacancy Center Spins above 600 K , 2012, 1201.4420.

[20]  L. Hollenberg,et al.  Theory of the ground state spin of the NV- center in diamond: I. Fine structure, hyperfine structure, and interactions with electric, magnetic and strain fields , 2011, 1111.5882.

[21]  D. Maclaurin,et al.  Quantum measurement and orientation tracking of fluorescent nanodiamonds inside living cells. , 2011, Nature nanotechnology.

[22]  L. Hollenberg,et al.  Electric-field sensing using single diamond spins , 2011 .

[23]  Lukin,et al.  Magnetic field imaging with nitrogen-vacancy ensembles , 2011, 1207.3339.

[24]  J. Schmiedmayer,et al.  Cavity QED with magnetically coupled collective spin states. , 2011, Physical review letters.

[25]  D. Budker,et al.  Optical properties of the nitrogen-vacancy singlet levels in diamond , 2010, 1009.0032.

[26]  F. Dolde,et al.  High sensitivity magnetic imaging using an array of spins in diamond. , 2010, The Review of scientific instruments.

[27]  D. Awschalom,et al.  Vector magnetic field microscopy using nitrogen vacancy centers in diamond , 2009, 0912.1355.

[28]  M. Markham,et al.  Ultralong spin coherence time in isotopically engineered diamond. , 2009, Nature materials.

[29]  D. Fisher,et al.  Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond , 2009 .

[30]  Alfred Leitenstorfer,et al.  Nanoscale imaging magnetometry with diamond spins under ambient conditions , 2008, Nature.

[31]  Takeshi Ohshima,et al.  EPR identification of intrinsic defects in SiC , 2008 .

[32]  S. Armstrong,et al.  Infrared emission of the NV centre in diamond: Zeeman and uniaxial stress studies , 2008, 0806.0895.

[33]  Jacob M. Taylor,et al.  High-sensitivity diamond magnetometer with nanoscale resolution , 2008, 0805.1367.

[34]  J. Larsson,et al.  Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory , 2008 .

[35]  Efthimios Kaxiras,et al.  Ab initio supercell calculations on nitrogen-vacancy center in diamond: Electronic structure and hyperfine tensors , 2008, 0803.1267.

[36]  Xie,et al.  Quantized Hall effect and quantum phase transitions in coupled two-layer electron systems. , 1993, Physical review. B, Condensed matter.

[37]  E. Oort,et al.  Electric-field-induced modulation of spin echoes of N-V centers in diamond , 1990 .

[38]  M. F. Hamer,et al.  Optical studies of the 1.945 eV vibronic band in diamond , 1976, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.