A controlled release system for proteins based on poly(ether ester) block-copolymers: polymer network characterization.

[1]  J. Feijen,et al.  Zero-order release of lysozyme from poly(ethylene glycol)/poly(butylene terephthalate) matrices. , 2000, Journal of controlled release : official journal of the Controlled Release Society.

[2]  Y. Lee,et al.  Albumin release from bioerodible hydrogels based on semi-interpenetrating polymer networks composed of poly(ϵ-caprolactone) and poly(ethylene glycol) macromer , 1997 .

[3]  J. E. Mark,et al.  Physical Properties of Polymers: Index , 2004 .

[4]  C. V. van Blitterswijk,et al.  Application of porous PEO/PBT copolymers for bone replacement. , 1996, Journal of biomedical materials research.

[5]  N. Peppas,et al.  Transport of ionizable drugs and proteins in crosslinked poly(acrylic acid) and poly(acrylic acid-co-2-hydroxyethyl methacrylate) hydrogels. I. Polymer characterization , 1996 .

[6]  A. Coombes,et al.  Improving the delivery capacity of microparticle systems using blends of poly(DL-lactide co-glycolide) and poly(ethylene glycol) , 1995 .

[7]  C. Blitterswijk,et al.  Preventing postoperative intraperitoneal adhesion formation with Polyactive™, a degradable copolymer acting as a barrier , 1995 .

[8]  C. V. van Blitterswijk,et al.  Degradative behaviour of polymeric matrices in (sub)dermal and muscle tissue of the rat: a quantitative study. , 1994, Biomaterials.

[9]  C. V. van Blitterswijk,et al.  Biocompatibility of a biodegradable matrix used as a skin substitute: an in vivo evaluation. , 1994, Journal of biomedical materials research.

[10]  C. V. van Blitterswijk,et al.  Interface reactions to PEO/PBT copolymers (Polyactive) after implantation in cortical bone. , 1994, Journal of biomedical materials research.

[11]  N. Peppas,et al.  Hydrophilic/hydrophobic, block and graft copolymeric hydrogels: synthesis, characterization, and solute partition and penetration , 1993 .

[12]  Y. Bae,et al.  Hydrogel delivery systems based on polymer blends, block co-polymers or interpenetrating networks , 1993 .

[13]  Kinam Park,et al.  Biodegradable Hydrogels for Drug Delivery , 1993 .

[14]  A. Hiltner,et al.  An FTIR–ATR investigation of in vivo poly(ether urethane) degradation , 1992 .

[15]  S. Fakirov,et al.  Effect of the block length on the deformation behavior of polyetheresters as revealed by small-angle X-ray scattering , 1992 .

[16]  J. J. Grote,et al.  New alloplastic tympanic membrane material. , 1991, The American journal of otology.

[17]  T. Okano,et al.  Heterogeneous interpenetrating polymer networks for drug delivery , 1991 .

[18]  S. Fakirov,et al.  Structure of segmented poly (ether ester)s as revealed by synchrotron radiation , 1990 .

[19]  J. J. Grote,et al.  Biocompatibility of a polyether urethane, polypropylene oxide, and a polyether polyester copolymer. A qualitative and quantitative study of three alloplastic tympanic membrane materials in the rat middle ear. , 1990, Journal of biomedical materials research.

[20]  S. Fakirov,et al.  Poly(ether/ester)s based on poly(butylene terephthalate) and poly(ethylene glycol), 1. Poly(ether/ester)s with various polyether: polyester ratios , 1990 .

[21]  S. Fakirov,et al.  Poly(ether/ester)s based on poly(butylene terephthalate) and poly(ethylene glycol), 2. Effect of polyether segment length , 1990 .

[22]  K. Zhu,et al.  Preparation , Characterization , and Properties of Polylactide ( PLA )-Poly ( ethylene Glycol ) ( PEG ) Copolymers : A Potential Drug Carrier , 2017 .

[23]  N. Peppas,et al.  Correlation between mesh size and equilibrium degree of swelling of polymeric networks. , 1989, Journal of biomedical materials research.

[24]  N. Peppas Hydrogels in Medicine and Pharmacy , 1987 .

[25]  K. Kataoka,et al.  Drug release from monolithic devices of segmented polyether‐poly(urethane‐urea)s having both hydrophobic and hydrophilic soft segments , 1986 .

[26]  N. A. Peppas,et al.  Microcrystalline and three-dimensional network structure of plasticized poly(vinyl chloride) , 1982 .

[27]  G. Wilkes,et al.  Structure–property relationships of a new series of segmented polyether–polyester copolymers , 1981 .

[28]  A. M. Reed,et al.  Biodegradable polymers for use in surgery — poly(ethylene oxide)/poly(ethylene terephthalate) (PEO/PET) copolymers: 2. In vitro degradation , 1981 .

[29]  A. M. Reed,et al.  Biodegradable polymers for use in surgery—poly(ethylene oxide) poly(ethylene terephthalate) (PEO/PET) copolymers: 1 , 1979 .

[30]  A. Tobolsky,et al.  Synthesis, characterization, and permeation properties of polyether‐based polyurethanes , 1972 .

[31]  K. A. Smith,et al.  Permeability studies with cellulosic membranes. , 1971, Journal of biomedical materials research.

[32]  Charles Tanford,et al.  Physical Chemistry of Macromolecules , 1961 .

[33]  A. Mikos,et al.  Diffusion-controlled delivery of proteins from hydrogels and other hydrophilic systems. , 1997, Pharmaceutical biotechnology.

[34]  P. Ferruti,et al.  Degradation behaviour of block copolymers containing poly(lactic-glycolic acid) and poly(ethylene glycol) segments. , 1996, Biomaterials.

[35]  C A van Blitterswijk,et al.  Cell-seeding and in vitro biocompatibility evaluation of polymeric matrices of PEO/PBT copolymers and PLLA. , 1993, Biomaterials.

[36]  T. Park,et al.  Poly(L-lactic acid)/pluronic blends : characterization of phase separation behavior, degradation, and morphology and use as protein-releasing matrices , 1992 .

[37]  J. Feijen,et al.  Albumin-heparin microspheres as carriers for cytostatic agents , 1990 .

[38]  P. Flory Principles of polymer chemistry , 1953 .

[39]  D. J. Montgomery,et al.  The physics of rubber elasticity , 1949 .