Schottky Yapılar Üzerine İnceleme ve Analiz Çalışması

Yuksek sicaklik ve vakum altinda metal ve yari iletkenlerin siki kontak edilmesi durumunda olusan metal-yari iletken kontaklar uzerinde hala cok sayida teorik ve deneysel calisma yapiliyor olmasina ragmen metal ve yari iletken arasindaki bariyerin olusumu ve iletimi mekanizmalari henuz tam olarak aydinlatilmamistir. Bu yapilar hakkinda yapilan ilk detayli calismalar W. Schottky tarafindan yapildigindan, bu metal-yari iletken kontaklar genellikle Schottky diyotlar/yapilar olarak bilinir. Gecmisten gunumuze farkli fiziksel, kimyasal ve elektriksel ozelliklere sahip cesitli malzemeler kullanilarak arayuzey tabakalar olmaksizin veya yalitkan, polimer ve ferroelektrik gibi arayuzey tabakalar iceren Schottky yapilarin performansi arttirilmaya calisilmistir. Cok yuksek frekanslarda ve dusuk ileri on gerilimde calisabilmesi ve cok hizli anahtarlama kabiliyeti gibi diger diyotlarda bulunmayan ozellikleri, elektronik teknolojideki yaygin kullanimi ve gelisime acik teknolojiye sahip olmasi bilim insanlarini Schottky yapilari uzerinde calismaya tesvik etmektedir. Bu calismada, metal yariiletken ve arayuzey tabakasina sahip metal yariiletken Schottky yapilarin bu alanda yapilan bilimsel calismalar da goz onune alinarak incelenmesi, zaman icindeki gelisiminin gozlenmesi ile birlikte dunya ve Turkiye’de bu alanda yapilan akademik calismalarin istatistiksel analizi yapilmistir. Sonucta, Turkiye'nin bilimsel calismalar bakimindan dunyanin neresinde oldugunu aciga cikartmak amaclanmistir. Ayni zamanda farkli MY yapilar uzerine yapilmis bilimsel calismalarin Turkiye ve dunyada ne oranda karsilik gordugu de ortaya konulmustur. Web of Science veri tabaninda Science Citation Index (SCI) tarafindan taranan ve hem Turkiye’de hem de tum dunyada yapilan akademik calismalarin analizi veri madenciligi ile otomatik veri toplama yontemleri ve Structured Query Language (SQL) sunucu yonetim studyosu programi kullanilarak yapilmistir. Istatistiksel analiz sonuclari her alanda Schottky yapilar uzerine Turkiye ve dunyada yapilan akademik calismalarin nerede ise her sene artis gosterdigini gostermektedir.

[1]  E. Antončík,et al.  On the theory of surface states , 1961 .

[2]  F. Yakuphanoglu,et al.  Photovoltaic and interface state density properties of the Au/n-GaAs Schottky barrier solar cell , 2011 .

[3]  A. Goetzberger,et al.  Interface states on semiconductor/insulator surfaces , 1976 .

[4]  F. Yakuphanoglu,et al.  Analysis of electronic parameters and interface states of boron dispersed triethanolamine/p-Si structure by AFM, I–V, C–V–f and G/ω–V–f techniques , 2010 .

[5]  H. Grubin The physics of semiconductor devices , 1979, IEEE Journal of Quantum Electronics.

[6]  An analysis of effects of device structures on retention characteristics in MFIS structures , 2000, ISAF 2000. Proceedings of the 2000 12th IEEE International Symposium on Applications of Ferroelectrics (IEEE Cat. No.00CH37076).

[7]  Yuan-kai Zheng,et al.  Fabrication and characteristics of Au/PZT/BIT/p-Si ferroelectric memory diode , 2001 .

[8]  B. Salem,et al.  Distribution of barrier heights in metal/n-InAlAs Schottky diodes from current–voltage–temperature measurements , 2014 .

[9]  C. R. Crowell,et al.  Photoelectric Determination of the Image Force Dielectric Constant For Hot Electrons in Schottky Barriers , 1964 .

[10]  Hans A. Bethe,et al.  Theory of the Boundary Layer of Crystal Rectifiers , 1991 .

[11]  Woo-Sik Kim,et al.  Thermal-stress stability of yttrium oxide as a buffer layer of metal-ferroelectric-insulator-semiconductor field effect transistor , 2005 .

[12]  Jürgen H. Werner,et al.  Barrier inhomogeneities at Schottky contacts , 1991 .

[13]  K. Reinhardt,et al.  Temperature dependence of the electrical characteristics of Yb/p-InP tunnel metal-insulator-semiconductor junctions , 1990 .

[14]  Barrier modification of Au/n-GaAs Schottky diode by swift heavy ion irradiation , 2007 .

[15]  A. Tataroğlu,et al.  The temperature profile and bias dependent series resistance of Au/Bi4Ti3O12/SiO2/n-Si (MFIS) structures , 2008 .

[16]  H. Ishiwara,et al.  Long Retention Performance of a MFIS Device Achieved by Introducing High-k Al 2 O 3 /Si 3 N 4 /Si Buffer Layer , 2003 .

[17]  I. Yahia,et al.  Effect of illumination and frequency on the capacitance spectroscopy and the relaxation process of p-ZnTe/n-CdMnTe/GaAs magnetic diode for photocapacitance applications , 2010 .

[18]  Indudhar Panduranga Vali,et al.  Tuning of Schottky barrier height of Al/n-Si by electron beam irradiation , 2017 .

[19]  Ching-Yuan Wu Interfacial layer theory of the Schottky barrier diodes , 1980 .

[20]  A. Tataroğlu,et al.  Gamma-ray irradiation effects on the interface states of MIS structures , 2009 .

[21]  A. Dakhel Nanocrystalline Pr-doped ZnO insulator for metal–insulator–Si Schottky diodes , 2009 .

[22]  A. Tataroğlu,et al.  The analysis of the series resistance and interface states of MIS Schottky diodes at high temperatures using I–V characteristics , 2009 .

[23]  A. Tataroğlu,et al.  The density of interface states and their relaxation times in Au/Bi4Ti3O12/SiO2/n‐Si(MFIS) structures , 2011 .

[24]  A. Bartolomeo Graphene Schottky diodes: an experimental review of the rectifying graphene/semiconductor heterojunction , 2015, 1505.07686.

[25]  A. Turut,et al.  Determination of contact parameters of Au/Carmine/n-Si Schottky device , 2010 .

[26]  A. Tataroğlu,et al.  Frequency and voltage effects on the dielectric properties and electrical conductivity of Al-TiW-Pd2Si/n-Si structures , 2008 .

[27]  H. Ishiwara,et al.  Nonvolatile ferroelectric-gate field-effect transistors using SrBi2Ta2O9/Pt/SrTa2O6/SiON/Si structures , 1999 .

[28]  A. N. Daw,et al.  On the current transport mechanism in a metal—insulator—semiconductor (MIS) diode , 1986 .

[29]  H C Card,et al.  Studies of tunnel MOS diodes I. Interface effects in silicon Schottky diodes , 1971 .

[30]  Jiabing Lv,et al.  Electronic properties of Al/MoO3/p-InP enhanced Schottky barrier contacts , 2016 .

[31]  Simulation of the capacitance-voltage characteristic in the case of epitaxial ferroelectric films with Schottky contacts , 2015 .

[32]  C. R. Crowell,et al.  Surface State and Interface Effects on the Capacitance‐Voltage Relationship in Schottky Barriers , 1969 .

[33]  A. C. Pandey,et al.  Effect of ion irradiation on current–voltage characteristics of Au/n-GaN Schottky diodes , 2009 .

[34]  R. L. Meirhaeghe,et al.  Electrical characteristics of Al/SiO2/n-Si tunnel diodes with an oxide layer grown by rapid thermal oxidation , 1994 .

[35]  A. Tataroğlu,et al.  The role of interface states and series resistance on the I–V and C–V characteristics in Al/SnO2/p-Si Schottky diodes , 2003 .

[36]  M. Yıldırım,et al.  Correlation between barrier height and ideality factor in identically prepared diodes of Al/Bi4Ti3O12/p-Si (MFS) structure with barrier inhomogeneity , 2017 .

[37]  K. Ueda,et al.  Ferromagnetic Schottky junctions using diamond semiconductors , 2012 .

[38]  I. Uslu,et al.  Temperature dependent current-transport mechanism in Au/(Zn-doped)PVA/n-GaAs Schottky barrier diodes (SBDs) , 2013 .

[39]  H. Henisch Metal-semiconductor Schottky barrier junctions and their applications , 1986, Proceedings of the IEEE.

[40]  F. Yakuphanoglu,et al.  Current–voltage and capacitance–voltage characteristics of Al/p-type silicon/organic semiconductor based on phthalocyanine rectifier contact , 2008 .

[41]  J. D. Levine Schottky‐Barrier Anomalies and Interface States , 1971 .

[42]  R. Gutmann,et al.  Interface state density in Au-nGaAs Schottky diodes , 1977 .

[43]  S. Demirezen,et al.  The effect of frequency and temperature on capacitance/conductance–voltage (C/G–V) characteristics of Au/n-GaAs Schottky barrier diodes (SBDs) , 2014 .

[44]  Serhat Orkun Tan,et al.  The scientific studies on smart grid in selected European countries , 2017 .

[45]  I. Yahia,et al.  Electrical and photovoltaic characteristics of Al/n-CdS Schottky diode , 2009 .

[46]  E. H. Snow,et al.  Surface Effects on Metal-Silicon Contacts , 1968 .

[47]  O. Tretyak,et al.  Room temperature negative differential capacitance in self-assembled quantum dots , 2008 .

[48]  Takashi Nakamura,et al.  Properties of Ferroelectric Memory FET Using Sr2(Ta, Nb)2O7 Thin Film , 1998 .

[49]  Gabriel Gomila,et al.  Relation for the nonequilibrium population of the interface states: Effects on the bias dependence of the ideality factor , 1997 .

[50]  O. Çiçek,et al.  Electrical characterizations of Au/ZnO/n-GaAs Schottky diodes under distinct illumination intensities , 2016, Journal of Materials Science: Materials in Electronics.

[51]  S. Özçelik,et al.  Frequency and voltage dependence of negative capacitance in Au/SiO2/n-GaAs structures , 2012 .

[52]  W. A. Hill,et al.  A single-frequency approximation for interface-state density determination , 1980 .

[53]  F. Yakuphanoglu,et al.  Temperature dependence of electronic parameters of organic Schottky diode based on fluorescein sodiu , 2011 .

[54]  Gang Chen,et al.  A study on MIS Schottky diode based hydrogen sensor using La2O3 as gate insulator , 2012, Microelectron. Reliab..

[55]  R. Bhajantri,et al.  Effect of barium chloride doping on PVA microstructure: positron annihilation study , 2007 .

[56]  The effect of native oxide layer on some electronic parameters of Au/n-Si/Au Sb Schottky barrier diodes , 2005 .

[57]  Mantu K. Hudait,et al.  Effects of thin oxide in metal-semiconductor and metal-insulator-semiconductor epi-GaAs Schottky diodes , 2000 .

[58]  Jianru Han,et al.  Samarium-doped Bi4Ti3O12 thin films grown on SiO2/p-Si(111) by spin coating metalorganic solution decomposition method , 2004 .

[59]  S. E. San,et al.  A compare of electrical characteristics in Al/p-Si (MS) and Al/C20H12/p-Si (MPS) type diodes using current–voltage (I–V) and capacitance–voltage (C–V) measurements , 2015 .

[60]  V. L. Rideout A review of the theory, technology and applications of metal-semiconductor rectifiers☆ , 1978 .

[61]  I. Uslu,et al.  Evaluation of electrical and photovoltaic behaviours as comparative of Au/n-GaAs (MS) diodes with and without pure and graphene (Gr)-doped polyvinyl alcohol (PVA) interfacial layer under dark and illuminated conditions , 2016 .