Study of uncertainty, average energy, and thermodynamic quantities of the time dependent quantum system

[1]  R. Carbó-Dorca,et al.  Analysis of solutions of time-dependent Schrödinger equation of a particle trapped in a spherical box , 2022, Journal of Mathematical Chemistry.

[2]  M. Molski Minimum-uncertainty coherent states of the hyperbolic and trigonometric Rosen–Morse oscillators , 2021, Journal of Mathematical Chemistry.

[3]  C. DavidJ.Fern'andez,et al.  Spectral manipulation of the trigonometric Rosen-Morse potential through supersymmetry , 2021, Physica Scripta.

[4]  D. Nath,et al.  Ro‐vibrational energy and thermodynamic properties of molecules subjected to Deng–Fan potential through an improved approximation , 2021, International Journal of Quantum Chemistry.

[5]  P. Roy,et al.  Time-dependent rationally extended Pöschl–Teller potential and some of its properties , 2020, The European Physical Journal Plus.

[6]  M. Abu-shady,et al.  Trigonometric Rosen–Morse Potential as a Quark–Antiquark Interaction Potential for Meson Properties in the Non-relativistic Quark Model Using EAIM , 2019, Few-Body Systems.

[7]  A. Dijkstra,et al.  Controlling a quantum system via its boundary conditions , 2018, The European Physical Journal D.

[8]  Integrability, Supersymmetry and Coherent States , 2019 .

[9]  V. I. Matveev,et al.  Quantum dynamics of a hydrogen-like atom in a time-dependent box: non-adiabatic regime , 2017, The European Physical Journal D.

[10]  J. Valdivia,et al.  Controlling the Quantum State with a time varying potential , 2017, Scientific Reports.

[11]  A. Contreras-Astorga A Time-Dependent Anharmonic Oscillator , 2017 .

[12]  K. Zelaya,et al.  Exactly Solvable Time-Dependent Oscillator-Like Potentials Generated by Darboux Transformations , 2017, 1706.04697.

[13]  R. V. Maluf,et al.  Three-dimensional Dirac oscillator in a thermal bath , 2014, 1406.5114.

[14]  D. Nath Information theoretic spreading measures of the symmetric trigonometric Rosen–Morse potential , 2014 .

[15]  R. V. Maluf,et al.  Thermodynamical properties of graphene in noncommutative phase–space , 2014, 1401.8051.

[16]  Guo-Hua Sun,et al.  Quantum information entropies of the eigenstates for a symmetrically trigonometric Rosen–Morse potential , 2013 .

[17]  D. Nath Information theoretic spreading measures of orthogonal functions , 2013, Journal of Mathematical Chemistry.

[18]  Abhijit Dutta,et al.  SUSY formalism for the symmetric double well potential , 2013 .

[19]  O. Fojón,et al.  The quantum square well with moving boundaries: A numerical analysis , 2010, Comput. Math. Appl..

[20]  J. Negro,et al.  Quantum infinite square well with an oscillating wall , 2009 .

[21]  U. Rößler The Free Electron Gas , 2009 .

[22]  P. Roy,et al.  A class of exactly solvable Schrödinger equation with moving boundary condition , 2007, 0712.2706.

[23]  S. Dong,et al.  Energy spectrum of the trigonometric Rosen–Morse potential using an improved quantization rule , 2007 .

[24]  M. L. Strekalov An accurate closed-form expression for the partition function of Morse oscillators , 2007 .

[25]  M. Kirchbach,et al.  The Trigonometric Rosen‐Morse Potential as a Prime Candidate for an Effective QCD Potential , 2006 .

[26]  Víctor M. Pérez-García,et al.  Similarity transformations for nonlinear Schrödinger equations with time-dependent coefficients , 2005, nlin/0512061.

[27]  M. Kirchbach,et al.  The trigonometric Rosen–Morse potential in the supersymmetric quantum mechanics and its exact solutions , 2005, quant-ph/0509055.

[28]  C. Yüce Exact solvability of moving boundary problems , 2004 .

[29]  C. Yüce Singular potentials and moving boundaries in 3D , 2004 .

[30]  B. Samsonov,et al.  Supersymmetry of the nonstationary schrödinger equation and time-dependent exactly solvable quantum models , 1997, quant-ph/9709039.

[31]  J. D. Lejarreta,et al.  The time-dependent canonical formalism: Generalized harmonic oscillator and the infinite square well with a moving boundary , 1999 .

[32]  Miguel A. Rodriguez,et al.  On form-preserving transformations for the time-dependent Schrödinger equation , 1998, math-ph/9809013.

[33]  A. Khare Supersymmetry in quantum mechanics , 1997, math-ph/0409003.

[34]  V. Bagrov,et al.  Supersymmetry of a nonstationary Schrödinger equation , 1996 .

[35]  D. Nikonov,et al.  Quantum particle in a box with moving walls , 1993 .

[36]  E. Fijalkow,et al.  Schrödinger equation with time‐dependent boundary conditions , 1981 .

[37]  H. R. Lewis,et al.  An Exact Quantum Theory of the Time‐Dependent Harmonic Oscillator and of a Charged Particle in a Time‐Dependent Electromagnetic Field , 1969 .