Three-dimensional secretion signals in chaperone-effector complexes of bacterial pathogens.

The type III secretion system (TTSS) of Gram-negative bacterial pathogens delivers effector proteins required for virulence directly into the cytosol of host cells. Delivery of many effectors depends on association with specific cognate chaperones in the bacterial cytosol. The mechanism of chaperone action is not understood. Here we present biochemical and crystallographic results on the Yersinia SycE-YopE chaperone-effector complex that contradict previous models of chaperone function and demonstrate that chaperone action is isolated to only a small portion of the effector. This, together with evidence for stereochemical conservation between chaperone-effector complexes, which are otherwise unrelated in sequence, indicates that these complexes function as general, three-dimensional TTSS secretion signals and may endow a temporal order to secretion.

[1]  S. He,et al.  Role of the Hrp Pilus in Type III Protein Secretion in Pseudomonas syringae , 2001, Science.

[2]  E. Zuiderweg,et al.  Structure of the type III secretion and substrate‐binding domain of Yersinia YopH phosphatase , 2001, Molecular microbiology.

[3]  G. Cornelis,et al.  Assembly and function of type III secretory systems. , 2000, Annual review of microbiology.

[4]  O. Schneewind,et al.  Yersinia enterocolitica Type III Secretion , 1999, The Journal of Biological Chemistry.

[5]  S. Birtalan,et al.  Structure of the Yersinia type III secretory system chaperone SycE , 2001, Nature Structural Biology.

[6]  Jorge E. Galán,et al.  Maintenance of an unfolded polypeptide by a cognate chaperone in bacterial type III secretion , 2001, Nature.

[7]  C. Hueck,et al.  Type III Protein Secretion Systems in Bacterial Pathogens of Animals and Plants , 1998, Microbiology and Molecular Biology Reviews.

[8]  R J Read,et al.  Crystallography & NMR system: A new software suite for macromolecular structure determination. , 1998, Acta crystallographica. Section D, Biological crystallography.

[9]  H. Wolf‐Watz,et al.  Targeting exported substrates to the Yersinia TTSS: different functions for different signals? , 2001, Trends in microbiology.

[10]  J. Bliska,et al.  The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence , 2000, Molecular microbiology.

[11]  M. Norman,et al.  Yersinia YopE is targeted for type III secretion by N‐terminal, not mRNA, signals , 2001, Molecular microbiology.

[12]  E A Merritt,et al.  Raster3D: photorealistic molecular graphics. , 1997, Methods in enzymology.

[13]  H. Wolf‐Watz,et al.  Genetic analysis of the yopE region of Yersinia spp.: identification of a novel conserved locus, yerA, regulating yopE expression , 1990, Journal of bacteriology.

[14]  I. Lambermont,et al.  Identification of the YopE and YopH domains required for secretion and internalization into the cytosol of macrophages, using the cyaA gene fusion approach. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Markus R. Wenk,et al.  Structural and biochemical characterization of the type III secretion chaperones CesT and SigE , 2001, Nature Structural Biology.

[16]  O. Schneewind,et al.  LcrQ/YscM1, regulators of the Yersinia yop virulon, are injected into host cells by a chaperone‐dependent mechanism , 2000, Molecular microbiology.

[17]  J. Galán,et al.  Supramolecular structure of the Salmonella typhimurium type III protein secretion system. , 1998, Science.

[18]  P. Boquet,et al.  Structure of the Rho-activating domain of Escherichia coli cytotoxic necrotizing factor 1 , 2001, Nature Structural Biology.

[19]  M. Telepnev,et al.  GAP activity of the Yersinia YopE cytotoxin specifically targets the Rho pathway: a mechanism for disruption of actin microfilament structure , 2000, Molecular microbiology.

[20]  G. Cornelis,et al.  The cytosolic SycE and SycH chaperones of Yersinia protect the region of YopE and YopH involved in translocation across eukaryotic cell membranes , 1996, Molecular microbiology.

[21]  P. Kraulis A program to produce both detailed and schematic plots of protein structures , 1991 .

[22]  T. Bergman,et al.  Modulation of Virulence Factor Expression by Pathogen Target Cell Contact , 1996, Science.

[23]  Z. Otwinowski,et al.  [20] Processing of X-ray diffraction data collected in oscillation mode. , 1997, Methods in enzymology.

[24]  O. Schneewind,et al.  Two independent type III secretion mechanisms for YopE in Yersinia enterocolitica , 1997, Molecular microbiology.

[25]  R. Rosqvist,et al.  The chaperone‐like protein YerA of Yersinia pseudotuberculosis stabilizes YopE in the cytoplasm but is dispensible for targeting to the secretion loci , 1995, Molecular microbiology.

[26]  G. Cornelis,et al.  Individual chaperones required for Yop secretion by Yersinia. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[27]  G. Cornelis,et al.  Role of SycD, the chaperone of the Yersinia Yop translocators YopB and YopD , 1999, Molecular microbiology.

[28]  H. Wolf‐Watz,et al.  Delineation and mutational analysis of the Yersinia pseudotuberculosis YopE domains which mediate translocation across bacterial and eukaryotic cellular membranes , 1996, Journal of bacteriology.

[29]  H. Wolf‐Watz,et al.  The virulence protein Yop5 of Yersinia pseudotuberculosis is regulated at transcriptional level by plasmid‐plB1 ‐encoded trans‐acting elements controlled by temperature and calcium , 1988, Molecular microbiology.

[30]  T. Bergman,et al.  The cytotoxic protein YopE of Yersinia obstructs the primary host defence , 1990, Molecular microbiology.

[31]  U. Bonas,et al.  The Xanthomonas Hrp type III system secretes proteins from plant and mammalian bacterial pathogens. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[32]  I. Lambermont,et al.  Competition between the Yops of Yersinia enterocolitica for Delivery into Eukaryotic Cells: Role of the SycE Chaperone Binding Domain of YopE , 2000, Journal of bacteriology.

[33]  T. Copeland,et al.  Electronic Reprint Biological Crystallography Structure of the N-terminal Domain of Yersinia Pestis Yoph at 2.0 ˚ a Resolution Biological Crystallography Structure of the N-terminal Domain of Yersinia Pestis Yoph at 2.0 a Ê Resolution , 2022 .

[34]  J. Tropea,et al.  Crystal structure of the Yersinia pestis GTPase activator YopE , 2002, Protein science : a publication of the Protein Society.

[35]  O. Schneewind,et al.  A mRNA signal for the type III secretion of Yop proteins by Yersinia enterocolitica. , 1997, Science.

[36]  P. Sansonetti,et al.  Structure and composition of the Shigella flexneri‘needle complex’, a part of its type III secreton , 2001, Molecular microbiology.

[37]  J. Tropea,et al.  Electronic Reprint Biological Crystallography Three-dimensional Structure of the Type Iii Secretion Chaperone Syce from Yersinia Pestis Biological Crystallography Three-dimensional Structure of the Type Iii Secretion Chaperone Syce from Yersinia Pestis , 2022 .

[38]  C. Sander,et al.  Protein structure comparison by alignment of distance matrices. , 1993, Journal of molecular biology.

[39]  J. Zou,et al.  Improved methods for building protein models in electron density maps and the location of errors in these models. , 1991, Acta crystallographica. Section A, Foundations of crystallography.