Spherical wavelets: efficiently representing functions on the sphere

Wavelets have proven to be powerful bases for use in numerical analysis and signal processing. Their power lies in the fact that they only require a small number of coefficients to represent general functions and large data sets accurately. This allows compression and efficient computations. Classical constructions have been limited to simple domains such as intervals and rectangles. In this paper we present a wavelet construction for scalar functions defined on the sphere. We show how biorthogonal wavelets with custom properties can be constructed with the lifting scheme. The bases are extremely easy to implement and allow fully adaptive subdivisions. We give examples of functions defined on the sphere, such as topographic data, bidirectional reflection distribution functions, and illumination, and show how they can be efficiently represented with spherical wavelets. CR

[1]  I. Daubechies Orthonormal bases of compactly supported wavelets , 1988 .

[2]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[3]  Gyorgy Fekete,et al.  Rendering and managing spherical data with sphere quadtrees , 1990, VIS '90.

[4]  F. Gyorgy,et al.  Rendering and managing spherical data with sphere quadtrees , 1990, Proceedings of the First IEEE Conference on Visualization: Visualization `90.

[5]  Stephen H. Westin,et al.  A global illumination solution for general reflectance distributions , 1991, SIGGRAPH.

[6]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[7]  Stephen H. Westin,et al.  Predicting reflectance functions from complex surfaces , 1992, SIGGRAPH.

[8]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[9]  Pat Hanrahan,et al.  Wavelet radiosity , 1993, SIGGRAPH.

[10]  Christophe Schlick,et al.  A Customizable Reflectance Model for Everyday Rendering , 1993 .

[11]  Gregory M. Nielson,et al.  Scattered data modeling , 1993, IEEE Computer Graphics and Applications.

[12]  I. Daubechies,et al.  Multiresolution analysis, wavelets and fast algorithms on an interval , 1993 .

[13]  Zicheng Liu,et al.  Hierarchical spacetime control , 1994, SIGGRAPH.

[14]  Gary W. Meyer,et al.  Wavelength dependent reflectance functions , 1994, SIGGRAPH.

[15]  M. Mitrea Clifford Wavelets, Singular Integrals, and Hardy Spaces , 1994 .

[16]  E. J. Stollnitz,et al.  Wavelet Radiance , 1994 .

[17]  A. Cohen Ten Lectures on Wavelets, CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 61, I. Daubechies, SIAM, 1992, xix + 357 pp. , 1994 .

[18]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[19]  Rüdiger Westermann,et al.  A multiresolution framework for volume rendering , 1994, VVS '94.

[20]  W. Dahmen Stability of Multiscale Transformations. , 1995 .

[21]  Peter Schröder,et al.  Spherical Wavelets: Texture Processing , 1995, Rendering Techniques.

[22]  W. Dahmen,et al.  Multiresolution analysis and wavelets on S2 and S3 , 1995 .

[23]  P. Hanrahan,et al.  Wavelet Methods for Radiance Computations , 1995 .

[24]  Michael F. Cohen,et al.  Hierarchical and variational geometric modeling with wavelets , 1995, I3D '95.

[25]  Wim Sweldens,et al.  The lifting scheme: a construction of second generation wavelets , 1998 .

[26]  Larry L. Schumaker,et al.  Bernstein-Bézier polynomials on spheres and sphere-like surfaces , 1996, Comput. Aided Geom. Des..

[27]  W. Freeden,et al.  Spherical wavelet transform and its discretization , 1996 .

[28]  Tony DeRose,et al.  Multiresolution analysis for surfaces of arbitrary topological type , 1997, TOGS.

[29]  W. Sweldens,et al.  A new class of unbalanced haar wavelets that form an unconditional basis for Lp on general measure spaces , 1997 .