A modified embedded-atom method interatomic potential for the Fe–H system

Abstract A modified embedded-atom method (MEAM) interatomic potential for the Fe–C binary system has been developed using previous MEAM potentials of Fe and C. The potential parameters were determined by fitting to experimental information on the dilute heat of solution of carbon, the vacancy–carbon binding energy and its configuration, the location of interstitial carbon atoms and the migration energy of carbon atoms in body-centered cubic (bcc) Fe, and to a first-principles calculation result for the cohesive energy of a hypothetical NaCl-type FeC. The potential reproduces the known physical properties of carbon as an interstitial solute element in bcc Fe and face-centered cubic Fe very well. The applicability of this potential to atomistic approaches for investigating interactions between carbon interstitial solute atoms and other defects such as vacancies, dislocations and grain boundaries, and also for investigating the effects of carbon on various deformation and mechanical behaviors of iron is demonstrated.

[1]  A. Damask,et al.  Calculations of the energy and migration characteristics of carbon and nitrogen in α-iron and vanadium☆ , 1964 .

[2]  C. J. Smithells,et al.  Smithells metals reference book , 1949 .

[3]  J. Askill Tracer Diffusion Data for Metals, Alloys, and Simple Oxides , 1970 .

[4]  Farkas,et al.  Embedded-atom interatomic potentials for hydrogen in metals and intermetallic alloys. , 1996, Physical review. B, Condensed matter.

[5]  J. Fuss,et al.  The resistivity recovery of high purity and carbon doped iron following low temperature electron irradiation , 1983 .

[6]  A. Vehanen,et al.  Vacancy-Carbon Interaction in Iron , 1980 .

[7]  P. Nordlander,et al.  Multiple hydrogen occupancy of vacancies in Fe , 1987 .

[8]  D. Turnbull,et al.  Solid State Physics : Advances in Research and Applications , 1978 .

[9]  E. Ligeon,et al.  Deuterium location and migration in metals: Comparison of implantation and solid solution , 1986 .

[10]  S. T. Picraux Defect trapping of gas atoms in metals , 1981 .

[11]  M. Baskes,et al.  Semiempirical, Quantum Mechanical Calculation of Hydrogen Embrittlement in Metals , 1983 .

[12]  C. Wolverton,et al.  Experimental and theoretical evidence for carbon-vacancy binding in austenite , 2004 .

[13]  R. Bechmann,et al.  Numerical data and functional relationships in science and technology , 1969 .

[14]  J. Foct,et al.  Ab initio study of foreign interstitial atom (C, N) interactions with intrinsic point defects in α-Fe , 2004 .

[15]  H. Berns,et al.  High nitrogen steels : structure, properties, manufacture, applications , 1999 .

[16]  W. Shu,et al.  Iron (Ruthenium and Osmium)-Hydrogen Systems , 2000 .

[17]  T. Ohno,et al.  Stability and clusterization of hydrogen-vacancy complexes in α-Fe: An ab initio study , 2003 .

[18]  Joshua R. Smith,et al.  Universal features of the equation of state of metals , 1984 .

[19]  A. F. Guillermet,et al.  Theory of bonding in transition-metal carbides and nitrides. , 1993, Physical review. B, Condensed matter.

[20]  Xuejun Xu,et al.  Embedded-atom-method functions for the body-centered-cubic iron and hydrogen , 2001 .

[21]  G. K. Williamson,et al.  X‐ray evidence for the interstitial position of carbon in α‐iron , 1953 .

[22]  A. Damask,et al.  Point defect configurations in irradiated iron-carbon alloys☆ , 1964 .

[23]  D. Olander Description of the hydrogen-metal interaction by a morse potential function , 1971 .

[24]  J. Hudson,et al.  The Adsorption of H2 and D2 on Fe(110). 1. Helium Scattering as a Probe of Adsorption. , 1988 .

[25]  Young-Han Shin,et al.  A modified embedded-atom method interatomic potential for Germanium , 2008 .

[26]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded atom method potentials for bcc transition metals , 2001 .

[27]  Foiles,et al.  Embedded-atom-method functions for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, and their alloys. , 1986, Physical review. B, Condensed matter.

[28]  Pierre Villars,et al.  Pearson's handbook of crystallographic data for intermetallic phases , 1985 .

[29]  J. Hirth,et al.  Effects of hydrogen on the properties of iron and steel , 1980 .

[30]  D. Farkas,et al.  Interatomic potentials for carbon interstitials in metals and intermetallics , 2002 .

[31]  F. D. Manchester,et al.  Phase diagrams of binary hydrogen alloys , 2000 .

[32]  E. Carter,et al.  Diffusion of interstitial hydrogen into and through bcc Fe from first principles , 2004 .

[33]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[34]  Armando Fernández Guillermet,et al.  Cohesive properties and vibrational entropy of 3d-transition metal carbides , 1992 .

[35]  A. Damask,et al.  Kinetics of carbon precipitation in irradiated iron—III. Calorimetry , 1964 .

[36]  V. Rosato Comparative behavior of carbon in b.c.c. and f.c.c. iron , 1989 .

[37]  A. Vehanen,et al.  Vacancies and carbon impurities inα- iron: Electron irradiation , 1982 .

[38]  A. F. Guillermet,et al.  Band structure and cohesive properties of 3d-transition-metal carbides and nitrides with the NaCl-type structure. , 1991, Physical review. B, Condensed matter.

[39]  M. Baskes,et al.  Modified embedded-atom potentials for cubic materials and impurities. , 1992, Physical review. B, Condensed matter.

[40]  J. M. Perlado,et al.  Cu diffusion in α-Fe: determination of solute diffusivities using atomic-scale simulations , 2004 .

[41]  岡本 博明,et al.  Phase diagrams of binary iron alloys , 1993 .

[42]  M. Meshii,et al.  Hydrogen detrapping from grain boundaries and dislocations in high purity iron , 1992 .

[43]  M. Baskes,et al.  Semiempirical atomic potentials for the fcc metals Cu, Ag, Au, Ni, Pd, Pt, Al, and Pb based on first and second nearest-neighbor modified embedded atom method , 2003 .

[44]  S. Louie,et al.  Ab initio study of iron and iron hydride: III. Vibrational states of H isotopes in Fe, Cr and Ni , 1998 .

[45]  M. Baskes,et al.  Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals , 1984 .

[46]  Michael I. Baskes,et al.  Second nearest-neighbor modified embedded-atom-method potential , 2000 .

[47]  Neville Reid Moody,et al.  COMMENT: Trapping of hydrogen to lattice defects in nickel , 1995 .

[48]  Michael I. Baskes,et al.  Determination of modified embedded atom method parameters for nickel , 1997 .

[49]  R. A. Johnson,et al.  Analytic embedded atom method model for bcc metals , 1989 .

[50]  D. T. Hawkins,et al.  Selected values of the thermodynamic properties of binary alloys , 1973 .

[51]  Tae-Ho Lee,et al.  A modified embedded-atom method interatomic potential for the Fe–N system: A comparative study with the Fe–C system , 2006 .

[52]  M. Weller,et al.  Internal friction studies on reactions of carbon and nitrogen with lattice defects in neutron irradiated iron , 1976 .