Correcting Quantum Errors with Entanglement

We show how entanglement shared between encoder and decoder can simplify the theory of quantum error correction. The entanglement-assisted quantum codes we describe do not require the dual-containing constraint necessary for standard quantum error–correcting codes, thus allowing us to “quantize” all of classical linear coding theory. In particular, efficient modern classical codes that attain the Shannon capacity can be made into entanglement-assisted quantum codes attaining the hashing bound (closely related to the quantum capacity). For systems without large amounts of shared entanglement, these codes can also be used as catalytic codes, in which a small amount of initial entanglement enables quantum communication.

[1]  D. Gottesman Theory of fault-tolerant quantum computation , 1997, quant-ph/9702029.

[2]  Shor,et al.  Good quantum error-correcting codes exist. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[3]  Charles H. Bennett,et al.  Teleporting an unknown quantum state via dual classical and Einstein-Podolsky-Rosen channels. , 1993, Physical review letters.

[4]  Robert G. Gallager,et al.  Low-density parity-check codes , 1962, IRE Trans. Inf. Theory.

[5]  Aram W. Harrow,et al.  A family of quantum protocols , 2004, International Symposium onInformation Theory, 2004. ISIT 2004. Proceedings..

[6]  Shor,et al.  Scheme for reducing decoherence in quantum computer memory. , 1995, Physical review. A, Atomic, molecular, and optical physics.

[7]  Steane,et al.  Error Correcting Codes in Quantum Theory. , 1996, Physical review letters.

[8]  Peter W. Shor,et al.  Entanglement-assisted capacity of a quantum channel and the reverse Shannon theorem , 2001, IEEE Trans. Inf. Theory.

[9]  Isaac L. Chuang,et al.  Entanglement in the stabilizer formalism , 2004 .

[10]  Garry Bowen Entanglement required in achieving entanglement-assisted channel capacities , 2002 .

[11]  A. Calderbank,et al.  Quantum Error Correction and Orthogonal Geometry , 1996, quant-ph/9605005.

[12]  R. Blume-Kohout,et al.  Climbing Mount Scalable: Physical Resource Requirements for a Scalable Quantum Computer , 2002, quant-ph/0204157.

[13]  David J. C. MacKay,et al.  Sparse-graph codes for quantum error correction , 2004, IEEE Transactions on Information Theory.

[14]  R. Jozsa,et al.  On the role of entanglement in quantum-computational speed-up , 2002, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[15]  N. J. A. Sloane,et al.  Quantum Error Correction Via Codes Over GF(4) , 1998, IEEE Trans. Inf. Theory.

[16]  D. Gottesman,et al.  GHZ extraction yield for multipartite stabilizer states , 2005, quant-ph/0504208.

[17]  Thierry Paul,et al.  Quantum computation and quantum information , 2007, Mathematical Structures in Computer Science.

[18]  Charles H. Bennett,et al.  Communication via one- and two-particle operators on Einstein-Podolsky-Rosen states. , 1992, Physical review letters.

[19]  Daniel Gottesman,et al.  Stabilizer Codes and Quantum Error Correction , 1997, quant-ph/9705052.

[20]  Charles H. Bennett,et al.  Mixed-state entanglement and quantum error correction. , 1996, Physical review. A, Atomic, molecular, and optical physics.

[21]  E. Knill,et al.  Theory of quantum error-correcting codes , 1997 .