Direct imaging of sub-Jupiter mass exoplanets with James Webb Space Telescope coronagraphy

The James Webb Space Telescope (JWST), currently scheduled to launch in 2021, will dramatically advance our understanding of exoplanetary systems with its ability to directly image and characterise planetary-mass companions at wide separations through coronagraphy. Using state-of-the-art simulations of JWST performance, in combination with the latest evolutionary models, we present the most sophisticated simulated mass sensitivity limits of JWST coronagraphy to date. In particular, we focus our efforts towards observations of members within the nearby young moving groups $\beta$ Pictoris and TW Hya. These limits indicate that whilst JWST will provide little improvement towards imaging exoplanets at short separations, at wide separations the increase in sensitivity is dramatic. We predict JWST will be capable of imaging sub-Jupiter mass objects beyond ~30 au, sub-Saturn mass objects beyond ~50 au, and that beyond ~100 au, JWST will be capable of directly imaging companions as small as 0.1 $M_\textrm{J}$ - at least an order of magnitude improvement over the leading ground-based instruments. Probing this unexplored parameter space will be of immediate value to modelling efforts focused on planetary formation and population synthesis. JWST will also serve as an excellent complement to ground based observatories through its unique ability to characterise previously detected companions across the near- to mid-infrared for the first time.

[1]  Jack J. Lissauer,et al.  Formation of the Giant Planets by Concurrent Accretion of Solids and Gas , 1995 .

[2]  Alan P. Boss,et al.  Giant Planet Formation by Gravitational Instability , 1997 .

[3]  T. Forveille,et al.  X-ray and molecular emission from the nearest region of recent star formation. , 1997, Science.

[4]  T. Guillot,et al.  A Nongray Theory of Extrasolar Giant Planets and Brown Dwarfs , 1997, astro-ph/9705201.

[5]  J. Hardy,et al.  Adaptive Optics for Astronomical Telescopes , 1998 .

[6]  Elizabeth A. Lada,et al.  Disk Frequencies and Lifetimes in Young Clusters , 2001, astro-ph/0104347.

[7]  Michael S. Bessell,et al.  The β Pictoris Moving Group , 2001 .

[8]  David R. Alexander,et al.  THE LIMITING EFFECTS OF DUST IN BROWN DWARF MODEL ATMOSPHERES , 2001 .

[9]  P. H. Hauschildt,et al.  Evolutionary models for cool brown dwarfs and extrasolar giant planets. The case of HD 209458 , 2003 .

[10]  H. Rix,et al.  The James Webb Space Telescope , 2006, astro-ph/0606175.

[11]  D. Lin,et al.  Toward a Deterministic Model of Planetary Formation. I. A Desert in the Mass and Semimajor Axis Distributions of Extrasolar Planets , 2004 .

[12]  Molefe Mokoene,et al.  The Messenger , 1995, Outrageous Fortune.

[13]  David R. Soderblom,et al.  The Ages of Stars , 2007, 1003.6074.

[14]  M. Marley,et al.  On the Luminosity of Young Jupiters , 2006, astro-ph/0609739.

[15]  B. Oppenheimer,et al.  The Gemini Deep Planet Survey , 2007, 0705.4290.

[16]  L. Hillenbrand,et al.  Improved Age Estimation for Solar-Type Dwarfs Using Activity-Rotation Diagnostics , 2008, 0807.1686.

[17]  B. Skiff,et al.  VizieR Online Data Catalog , 2009 .

[18]  Frantz Martinache,et al.  Planetary system and star formation science with non-redundant masking on JWST , 2009, Optical Engineering + Applications.

[19]  Adam D. Myers,et al.  INFERRING THE ECCENTRICITY DISTRIBUTION , 2010, 1008.4146.

[20]  Rene Doyon,et al.  Imaging Young Giant Planets From Ground and Space , 2010, 1001.0351.

[21]  C. Mordasini Planetary Population Synthesis , 2010, 1804.01532.

[22]  Martin G. Cohen,et al.  THE WIDE-FIELD INFRARED SURVEY EXPLORER (WISE): MISSION DESCRIPTION AND INITIAL ON-ORBIT PERFORMANCE , 2010, 1008.0031.

[23]  B. Macintosh,et al.  CLOUDS AND CHEMISTRY IN THE ATMOSPHERE OF EXTRASOLAR PLANET HR8799b , 2011, 1103.3895.

[24]  Edwin A. Bergin,et al.  THE EFFECTS OF SNOWLINES ON C/O IN PLANETARY ATMOSPHERES , 2011, 1110.5567.

[25]  Nikku Madhusudhan,et al.  C/O RATIO AS A DIMENSION FOR CHARACTERIZING EXOPLANETARY ATMOSPHERES , 2012, 1209.2412.

[26]  M. R. Haas,et al.  PLANET OCCURRENCE WITHIN 0.25 AU OF SOLAR-TYPE STARS FROM KEPLER , 2011, 1103.2541.

[27]  Adam Burrows,et al.  SPECTRAL AND PHOTOMETRIC DIAGNOSTICS OF GIANT PLANET FORMATION SCENARIOS , 2011, 1108.5172.

[28]  D. Saumon,et al.  NEGLECTED CLOUDS IN T AND Y DWARF ATMOSPHERES , 2012, 1206.4313.

[29]  Frantz Martinache,et al.  Non-redundant Aperture Masking Interferometry (AMI) and segment phasing with JWST-NIRISS , 2012, Other Conferences.

[30]  Neil Rowlands,et al.  The JWST Fine Guidance Sensor (FGS) and Near-Infrared Imager and Slitless Spectrograph (NIRISS) , 2012, Other Conferences.

[31]  S. Desidera,et al.  MESS (multi-purpose exoplanet simulation system) - A Monte Carlo tool for the statistical analysis and prediction of exoplanet search results , 2011, 1110.4917.

[32]  F. Castelli,et al.  New ATLAS9 And MARCS Model Atmosphere Grids For The Apache Point Observatory Galactic Evolution Experiment (APOGEE) , 2012 .

[33]  R. Soummer,et al.  DETECTION AND CHARACTERIZATION OF EXOPLANETS AND DISKS USING PROJECTIONS ON KARHUNEN–LOÈVE EIGENIMAGES , 2012, 1207.4197.

[34]  R. Jayawardhana,et al.  Quick-MESS: A Fast Statistical Tool for Exoplanet Imaging Surveys , 2013, Proceedings of the International Astronomical Union.

[35]  F. Fressin,et al.  THE FALSE POSITIVE RATE OF KEPLER AND THE OCCURRENCE OF PLANETS , 2013, 1301.0842.

[36]  D. Forgan,et al.  Towards a population synthesis model of objects formed by self-gravitating disc fragmentation and tidal downsizing , 2013, 1304.4978.

[37]  Laird M. Close,et al.  THE GEMINI NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF GIANT PLANETS AROUND YOUNG B AND A STARS , 2013, Proceedings of the International Astronomical Union.

[38]  Laird M. Close,et al.  THE GEMINI/NICI PLANET-FINDING CAMPAIGN: THE FREQUENCY OF PLANETS AROUND YOUNG MOVING GROUP STARS , 2013, 1309.1462.

[39]  Vanessa P. Bailey,et al.  DIRECTLY IMAGED L-T TRANSITION EXOPLANETS IN THE MID-INFRARED, , 2013, 1311.2085.

[40]  R. Doyon,et al.  BANYAN. IV. FUNDAMENTAL PARAMETERS OF LOW-MASS STAR CANDIDATES IN NEARBY YOUNG STELLAR KINEMATIC GROUPS—ISOCHRONAL AGE DETERMINATION USING MAGNETIC EVOLUTIONARY MODELS , 2014, 1406.6750.

[41]  C. A. Grady,et al.  THE MOVING GROUP TARGETS OF THE SEEDS HIGH-CONTRAST IMAGING SURVEY OF EXOPLANETS AND DISKS: RESULTS AND OBSERVATIONS FROM THE FIRST THREE YEARS , 2013, 1305.7264.

[42]  G. Montagnier,et al.  The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. II. Survey description, results, and performances , 2014, 1405.1560.

[43]  Bertrand Mennesson,et al.  FUNDAMENTAL LIMITATIONS OF HIGH CONTRAST IMAGING SET BY SMALL SAMPLE STATISTICS , 2014, 1407.2247.

[44]  Heidelberg,et al.  Constraining the initial entropy of directly detected exoplanets , 2013, 1302.1517.

[45]  Marshall D. Perrin,et al.  Updated point spread function simulations for JWST with WebbPSF , 2014, Astronomical Telescopes and Instrumentation.

[46]  A. Amara,et al.  High-contrast imaging with Spitzer: deep observations of Vega, Fomalhaut, and ϵ Eridani , 2014, 1412.4816.

[47]  Evgenya L. Shkolnik,et al.  PLANETS AROUND LOW-MASS STARS (PALMS). IV. THE OUTER ARCHITECTURE OF M DWARF PLANETARY SYSTEMS , 2014, 1411.3722.

[48]  A. Burrows,et al.  DEEP THERMAL INFRARED IMAGING OF HR 8799 bcde: NEW ATMOSPHERIC CONSTRAINTS AND LIMITS ON A FIFTH PLANET , 2014, 1409.5134.

[49]  D. Saumon,et al.  WATER CLOUDS IN Y DWARFS AND EXOPLANETS , 2014, 1404.0005.

[50]  Mark Clampin,et al.  Small-grid dithering strategy for improved coronagraphic performance with JWST , 2014, Astronomical Telescopes and Instrumentation.

[51]  Matthias Schock,et al.  Thirty Meter Telescope Detailed Science Case: 2015 , 2015, 1505.01195.

[52]  Paul Eccleston,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, VIII: The MIRI Focal Plane System , 2015, 1508.02417.

[53]  T. Henning,et al.  MODEL ATMOSPHERES OF IRRADIATED EXOPLANETS: THE INFLUENCE OF STELLAR PARAMETERS, METALLICITY, AND THE C/O RATIO , 2015, 1509.07523.

[54]  F. Allard,et al.  New evolutionary models for pre-main sequence and main sequence low-mass stars down to the hydrogen-burning limit , 2015, 1503.04107.

[55]  S. Hinkley,et al.  STATISTICS OF LONG PERIOD GAS GIANT PLANETS IN KNOWN PLANETARY SYSTEMS , 2015, 1601.07595.

[56]  Rachel E. Anderson,et al.  The Mid-Infrared Instrument for the James Webb Space Telescope, X: Operations and Data Reduction , 2015, 1512.03000.

[57]  D. Forgan,et al.  The dynamical fate of self-gravitating disc fragments after tidal downsizing , 2014, 1411.7313.

[58]  Edward J. Wollack,et al.  Wide-Field InfrarRed Survey Telescope-Astrophysics Focused Telescope Assets WFIRST-AFTA 2015 Report , 2015, 1503.03757.

[59]  U. Exeter,et al.  A self-consistent, absolute isochronal age scale for young moving groups in the solar neighbourhood , 2015, 1508.05955.

[60]  Bertrand Koehler,et al.  The E-ELT program status , 2016, Astronomical Telescopes + Instrumentation.

[61]  Jacob L. Bean,et al.  HELIOS: AN OPEN-SOURCE, GPU-ACCELERATED RADIATIVE TRANSFER CODE FOR SELF-CONSISTENT EXOPLANETARY ATMOSPHERES , 2016, 1606.05474.

[62]  M. Janson,et al.  HIGH CONTRAST IMAGING WITH SPITZER: CONSTRAINING THE FREQUENCY OF GIANT PLANETS OUT TO 1000 au SEPARATIONS , 2016, 1604.00859.

[63]  Rene Doyon,et al.  The International Deep Planet Survey: II. The frequency of directly imaged giant exoplanets with stellar mass , 2016, 1607.08239.

[64]  Laurent Pueyo,et al.  Pandeia: a multi-mission exposure time calculator for JWST and WFIRST , 2016, Astronomical Telescopes + Instrumentation.

[65]  Gaia Collaboration,et al.  The Gaia mission , 2016, 1609.04153.

[66]  Brendan P. Bowler,et al.  Imaging Extrasolar Giant Planets , 2016, 1605.02731.

[67]  E. Bergin,et al.  EXCESS C/O AND C/H IN OUTER PROTOPLANETARY DISK GAS , 2016, 1610.07859.

[68]  Mark Clampin,et al.  Small-grid dithers for the JWST coronagraphs , 2016, Astronomical Telescopes + Instrumentation.

[69]  C. Mordasini,et al.  Characterization of exoplanets from their formation III: The statistics of planetary luminosities , 2017, 1708.00868.

[70]  Anthony Boccaletti,et al.  A Self-consistent Cloud Model for Brown Dwarfs and Young Giant Exoplanets: Comparison with Photometric and Spectroscopic Observations , 2017, 1711.11483.

[71]  E. Serabyn,et al.  Deep Imaging Search for Planets Forming in the TW Hya Protoplanetary Disk with the Keck/NIRC2 Vortex Coronagraph , 2017, 1706.07489.

[72]  P. Lagage,et al.  Toward the Analysis of JWST Exoplanet Spectra: Identifying Troublesome Model Parameters , 2017, 1710.08235.

[73]  Scott W. Fleming,et al.  A New Stellar Atmosphere Grid and Comparisons with HST/STIS CALSPEC Flux Distributions , 2017, 1704.00653.

[74]  Dimitri Mawet,et al.  A New Standard for Assessing the Performance of High Contrast Imaging Systems , 2017, 1711.01215.

[75]  Julien H. Girard,et al.  The VLT/NaCo large program to probe the occurrence of exoplanets and brown dwarfs at wide orbits. IV. Gravitational instability rarely forms wide, giant planets , 2017, 1703.05322.

[76]  A. Vigan,et al.  Spectral and atmospheric characterization of 51 Eridani b using VLT/SPHERE , 2017, 1704.02987.

[77]  T. A. Lister,et al.  Gaia Data Release 2. Summary of the contents and survey properties , 2018, 1804.09365.

[78]  Vanessa P. Bailey,et al.  The LEECH Exoplanet Imaging Survey: Limits on Planet Occurrence Rates under Conservative Assumptions , 2018, The Astronomical Journal.

[79]  B. Zuckerman The Nearby, Young, Argus Association: Membership, Age, and Dusty Debris Disks , 2018, The Astrophysical Journal.

[80]  M. Marley,et al.  An L Band Spectrum of the Coldest Brown Dwarf , 2018, 1804.07771.

[81]  J. Rameau,et al.  Constraints on the Occurrence and Distribution of 1–20 MJup Companions to Stars at Separations of 5–5000 au from a Compilation of Direct Imaging Surveys , 2019, The Astronomical Journal.

[82]  M. Audard,et al.  Stellar models and isochrones from low-mass to massive stars including pre-main sequence phase with accretion , 2019, Astronomy & Astrophysics.

[83]  Andy Skemer,et al.  Comparing nonredundant masking and filled-aperture kernel phase for exoplanet detection and characterization , 2019 .

[84]  Mamadou N'Diaye,et al.  NEAR: First Results from the Search for Low-Mass Planets in α Cen , 2019 .

[85]  J. Alves,et al.  Extended stellar systems in the solar neighborhood , 2019, Astronomy & Astrophysics.

[86]  M. Agüeros,et al.  TESS Reveals that the Nearby Pisces–Eridanus Stellar Stream is only 120 Myr Old , 2019, The Astronomical Journal.

[87]  Dmitry Savransky,et al.  The Gemini Planet Imager Exoplanet Survey: Giant Planet and Brown Dwarf Demographics from 10 to 100 au , 2019, The Astronomical Journal.

[88]  T. Barclay,et al.  The Feasibility of Directly Imaging Nearby Cold Jovian Planets with MIRI/JWST , 2019, The Astronomical Journal.

[89]  S. Quanz,et al.  Evolutionary models of cold and low-mass planets: cooling curves, magnitudes, and detectability , 2018, Astronomy & Astrophysics.

[90]  D. Mawet,et al.  Deep Exploration of ϵ Eridani with Keck Ms-band Vortex Coronagraphy and Radial Velocities: Mass and Orbital Parameters of the Giant Exoplanet , 2018, The Astronomical Journal.

[91]  N. Madhusudhan Exoplanetary Atmospheres: Key Insights, Challenges, and Prospects , 2019, Annual Review of Astronomy and Astrophysics.

[92]  Julien H. Girard,et al.  SPHERE: the exoplanet imager for the Very Large Telescope , 2019, Astronomy & Astrophysics.

[93]  J. Fortney,et al.  Aerosol composition of hot giant exoplanets dominated by silicates and hydrocarbon hazes , 2020, 2005.11939.

[94]  E. Dishoeck,et al.  Connecting planet formation and astrochemistry , 2020, Astronomy & Astrophysics.

[95]  M. Marley,et al.  Observations of Disequilibrium CO Chemistry in the Coldest Brown Dwarfs , 2020, The Astronomical Journal.

[96]  F. Spiegelman,et al.  A new set of atmosphere and evolution models for cool T–Y brown dwarfs and giant exoplanets , 2020, Astronomy & Astrophysics.

[97]  D. Fantinel,et al.  The SPHERE infrared survey for exoplanets (SHINE) , 2020, Astronomy & Astrophysics.