Quantum simulation study of the hydrated electron

An excess electron in a sample of classical water molecules at room temperature has been simulated using path integral techniques. The electron–water interaction is modeled by a pseudopotential with effective core repulsion and further terms for the Coulomb interaction and polarization effects. Various discretizations of the electron path, up to 1000 points, are examined. The charge distribution of the electron is found to be compact and to occupy a cavity in the water, in agreement with the conventional picture. The solvation shell structure is similar to that of relatively large solvated atomic anions, but the radial electron‐solvent correlations are largely smeared out due to fluctuations of the electronic density distribution. In parts of the simulation the structure of the first solvation shell corresponds on the average to the structure proposed for hydrated electrons by Kevan. The computed solvation energy and the estimated energy of the first optical excitation agree reasonably well with experimen...

[1]  K. Heinzinger The structure of aqueous electrolyte solutions as derived from MD (molecular dynamics) simulations , 1985 .

[2]  M. Parrinello,et al.  Study of an F center in molten KCl , 1984 .

[3]  S. Nosé A unified formulation of the constant temperature molecular dynamics methods , 1984 .

[4]  P. Wolynes,et al.  Convenient and accurate discretized path integral methods for equilibrium quantum mechanical calculations , 1981 .

[5]  Rahman,et al.  Molecular-dynamics study of atomic motions in water. , 1985, Physical review. B, Condensed matter.

[6]  B. Webster Some new perspectives for excess electron theory and experiment. Linking the microscopic with the macroscopic , 1980 .

[7]  John C. Thompson Electrons in liquid ammonia , 1976 .

[8]  D. Chandler,et al.  Excess electrons in simple fluids. II. Numerical results for the hard sphere solvent , 1984 .

[9]  L. Kevan,et al.  Solvated electron structure in glassy matrixes , 1981 .

[10]  R. Pierotti,et al.  A scaled particle theory of aqueous and nonaqueous solutions , 1976 .

[11]  D. Bounds A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca++, Ni++ and Cl- , 1985 .

[12]  On the interpretation of solute induced solvent structure , 1981 .

[13]  T. R. Tuttle,et al.  On the nature of solvated electrons in polar fluids , 1978 .

[14]  B. Webster Chapter 10. Electron solvation phenomena , 1979 .

[15]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[16]  J. Simons,et al.  Excess electrons in condensed media: Theory of optical absorption spectrum in molecular solutions , 1978 .

[17]  H. Hertz,et al.  Experimental Proof that Water Arrangement in the Hydration Sphere of Ff− is Symmetric , 1984 .

[18]  R. Impey,et al.  Study of electron solvation in polar solvents using path integral calculations , 1986 .

[19]  E. Hart,et al.  The Hydrated Electron , 1963, Science.

[20]  T. R. Tuttle,et al.  The shape as a characteristic property of solvated electron optical absorption bands , 1984 .

[21]  M. Klein,et al.  Computer simulation of muonium in water , 1984 .

[22]  J. Boag,et al.  ABSORPTION SPECTRUM OF THE HYDRATED ELECTRON IN WATER AND IN AQUEOUS SOLUTIONS , 1962 .

[23]  B. Berne,et al.  Path-integral Monte Carlo simulations of electron localization in water clusters , 1986 .

[24]  Anders Wallqvist,et al.  Path-integral simulation of pure water☆ , 1985 .

[25]  P. Rossky,et al.  An electron–water pseudopotential for condensed phase simulation , 1987 .

[26]  R. Impey,et al.  Study of electron solvation in liquid ammonia using quantum path integral Monte Carlo calculations , 1985 .

[27]  F. Jou,et al.  Temperature and isotope effects on the shape of the optical absorption spectrum of solvated electrons in water , 1979 .

[28]  L. Kevan,et al.  Electron-solvent and anion-solvent interactions , 1976 .

[29]  William C. Swope,et al.  The role of long ranged forces in determining the structure and properties of liquid water , 1983 .

[30]  N. Kestner,et al.  Excess Electrons in Polar Solvents , 1970 .

[31]  A. Brodsky,et al.  Temperature dependence of optical absorption spectra and the physical nature of solvated electrons , 1984 .

[32]  B. Berne,et al.  On path integral Monte Carlo simulations , 1982 .

[33]  William L. Jorgensen,et al.  Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions , 1984 .

[34]  Felix Franks,et al.  Water:A Comprehensive Treatise , 1972 .

[35]  L. Kevan,et al.  Semicontinuum model for trapped electrons in polar liquids and solids. Trends with matrix polarity. , 1973 .

[36]  Aneesur Rahman,et al.  Hydrated electron revisited via the feynman path integral route , 1986 .

[37]  R. A. Kuharski,et al.  A quantum mechanical study of structure in liquid H2O and D2O , 1985 .

[38]  J. Enderby,et al.  The structure of an aqueous solution of nickel chloride , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  K. Heinzinger,et al.  Structural Properties of an Aqueous LiI Solution Derived from a Molecular Dynamics Simulation , 1981 .

[40]  H. C. Andersen Molecular dynamics simulations at constant pressure and/or temperature , 1980 .

[41]  C. Briant,et al.  Molecular dynamics study of the effects of ions on water microclusters , 1976 .

[42]  L. Kevan,et al.  Theoretical models for solvated electrons , 1980 .

[43]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[44]  J. L. Dye Colloque Weyl IV. Electrons in Fluids - The Nature of Metal-Ammonia Solutions. Introductory Remarks , 1975 .

[45]  B. Webster Colloque Weyl V. The Fifth International Conference on Excess Electrons and Metal-Ammonia Solutions. Introductory Remarks , 1980 .

[46]  M. Klein,et al.  Simulation of an excess electron in a hard sphere fluid , 1985 .

[47]  W. Weyl Ueber Metallammonium‐Verbindungen , 1864 .

[48]  Graham Hills,et al.  The computer simulation of polar liquids , 1979 .

[49]  M. Mezei,et al.  Monte Carlo studies of the structure of dilute aqueous sclutions of Li+, Na+, K+, F−, and Cl− , 1981 .

[50]  Bruce J. Berne,et al.  Nonergodicity in path integral molecular dynamics , 1984 .

[51]  U. Schindewolf,et al.  Bericht über die Frühjahrs‐Diskussionstagung 1971 der Deutschen Bunsen‐Gesellschaft für Physikalische Chemie vom 29. bis 31. März 1971 in Herrenalb. solvatisierte Elektronen in flüssigen und festen Lösungen , 1971 .

[52]  N. Mott,et al.  Metal-ammonia solutions , 1969 .

[53]  Hall,et al.  Behavior of an electron in helium gas. , 1985, Physical review. B, Condensed matter.

[54]  Peter G. Wolynes,et al.  Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .

[55]  R. A. Kuharski,et al.  Quantum simulations of aqueous systems , 1986 .

[56]  D. Adams,et al.  Computer simulation of ionic systems: The distorting effects of the boundary conditions , 1979 .

[57]  R. W. Hall,et al.  A Path Integral Monte Carlo Study of Liquid Neon and the Quantum Effective Pair Potential , 1984 .

[58]  G. Lepoutre Colloque Weyl: a short history , 1984 .

[59]  J. Kroh,et al.  Statistical approach to localized states A review of recent theoretical research institute of applied radiation chemistry , 1981 .

[60]  J. Doll,et al.  A Monte Carlo method for quantum Boltzmann statistical mechanics using Fourier representations of path integrals , 1984 .

[61]  R. Feynman,et al.  Quantum Mechanics and Path Integrals , 1965 .

[62]  P. Rossky Inconsistent dielectric behaviour of proposed hamiltonian models for ionic solutions , 1983 .