Quantum simulation study of the hydrated electron
暂无分享,去创建一个
[1] K. Heinzinger. The structure of aqueous electrolyte solutions as derived from MD (molecular dynamics) simulations , 1985 .
[2] M. Parrinello,et al. Study of an F center in molten KCl , 1984 .
[3] S. Nosé. A unified formulation of the constant temperature molecular dynamics methods , 1984 .
[4] P. Wolynes,et al. Convenient and accurate discretized path integral methods for equilibrium quantum mechanical calculations , 1981 .
[5] Rahman,et al. Molecular-dynamics study of atomic motions in water. , 1985, Physical review. B, Condensed matter.
[6] B. Webster. Some new perspectives for excess electron theory and experiment. Linking the microscopic with the macroscopic , 1980 .
[7] John C. Thompson. Electrons in liquid ammonia , 1976 .
[8] D. Chandler,et al. Excess electrons in simple fluids. II. Numerical results for the hard sphere solvent , 1984 .
[9] L. Kevan,et al. Solvated electron structure in glassy matrixes , 1981 .
[10] R. Pierotti,et al. A scaled particle theory of aqueous and nonaqueous solutions , 1976 .
[11] D. Bounds. A molecular dynamics study of the structure of water around the ions Li+, Na+, K+, Ca++, Ni++ and Cl- , 1985 .
[12] On the interpretation of solute induced solvent structure , 1981 .
[13] T. R. Tuttle,et al. On the nature of solvated electrons in polar fluids , 1978 .
[14] B. Webster. Chapter 10. Electron solvation phenomena , 1979 .
[15] W. L. Jorgensen,et al. Comparison of simple potential functions for simulating liquid water , 1983 .
[16] J. Simons,et al. Excess electrons in condensed media: Theory of optical absorption spectrum in molecular solutions , 1978 .
[17] H. Hertz,et al. Experimental Proof that Water Arrangement in the Hydration Sphere of Ff− is Symmetric , 1984 .
[18] R. Impey,et al. Study of electron solvation in polar solvents using path integral calculations , 1986 .
[19] E. Hart,et al. The Hydrated Electron , 1963, Science.
[20] T. R. Tuttle,et al. The shape as a characteristic property of solvated electron optical absorption bands , 1984 .
[21] M. Klein,et al. Computer simulation of muonium in water , 1984 .
[22] J. Boag,et al. ABSORPTION SPECTRUM OF THE HYDRATED ELECTRON IN WATER AND IN AQUEOUS SOLUTIONS , 1962 .
[23] B. Berne,et al. Path-integral Monte Carlo simulations of electron localization in water clusters , 1986 .
[24] Anders Wallqvist,et al. Path-integral simulation of pure water☆ , 1985 .
[25] P. Rossky,et al. An electron–water pseudopotential for condensed phase simulation , 1987 .
[26] R. Impey,et al. Study of electron solvation in liquid ammonia using quantum path integral Monte Carlo calculations , 1985 .
[27] F. Jou,et al. Temperature and isotope effects on the shape of the optical absorption spectrum of solvated electrons in water , 1979 .
[28] L. Kevan,et al. Electron-solvent and anion-solvent interactions , 1976 .
[29] William C. Swope,et al. The role of long ranged forces in determining the structure and properties of liquid water , 1983 .
[30] N. Kestner,et al. Excess Electrons in Polar Solvents , 1970 .
[31] A. Brodsky,et al. Temperature dependence of optical absorption spectra and the physical nature of solvated electrons , 1984 .
[32] B. Berne,et al. On path integral Monte Carlo simulations , 1982 .
[33] William L. Jorgensen,et al. Energy component analysis for dilute aqueous solutions of lithium(1+), sodium(1+), fluoride(1-), and chloride(1-) ions , 1984 .
[34] Felix Franks,et al. Water:A Comprehensive Treatise , 1972 .
[35] L. Kevan,et al. Semicontinuum model for trapped electrons in polar liquids and solids. Trends with matrix polarity. , 1973 .
[36] Aneesur Rahman,et al. Hydrated electron revisited via the feynman path integral route , 1986 .
[37] R. A. Kuharski,et al. A quantum mechanical study of structure in liquid H2O and D2O , 1985 .
[38] J. Enderby,et al. The structure of an aqueous solution of nickel chloride , 1983, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.
[39] K. Heinzinger,et al. Structural Properties of an Aqueous LiI Solution Derived from a Molecular Dynamics Simulation , 1981 .
[40] H. C. Andersen. Molecular dynamics simulations at constant pressure and/or temperature , 1980 .
[41] C. Briant,et al. Molecular dynamics study of the effects of ions on water microclusters , 1976 .
[42] L. Kevan,et al. Theoretical models for solvated electrons , 1980 .
[43] G. Ciccotti,et al. Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .
[44] J. L. Dye. Colloque Weyl IV. Electrons in Fluids - The Nature of Metal-Ammonia Solutions. Introductory Remarks , 1975 .
[45] B. Webster. Colloque Weyl V. The Fifth International Conference on Excess Electrons and Metal-Ammonia Solutions. Introductory Remarks , 1980 .
[46] M. Klein,et al. Simulation of an excess electron in a hard sphere fluid , 1985 .
[47] W. Weyl. Ueber Metallammonium‐Verbindungen , 1864 .
[48] Graham Hills,et al. The computer simulation of polar liquids , 1979 .
[49] M. Mezei,et al. Monte Carlo studies of the structure of dilute aqueous sclutions of Li+, Na+, K+, F−, and Cl− , 1981 .
[50] Bruce J. Berne,et al. Nonergodicity in path integral molecular dynamics , 1984 .
[51] U. Schindewolf,et al. Bericht über die Frühjahrs‐Diskussionstagung 1971 der Deutschen Bunsen‐Gesellschaft für Physikalische Chemie vom 29. bis 31. März 1971 in Herrenalb. solvatisierte Elektronen in flüssigen und festen Lösungen , 1971 .
[52] N. Mott,et al. Metal-ammonia solutions , 1969 .
[53] Hall,et al. Behavior of an electron in helium gas. , 1985, Physical review. B, Condensed matter.
[54] Peter G. Wolynes,et al. Exploiting the isomorphism between quantum theory and classical statistical mechanics of polyatomic fluids , 1981 .
[55] R. A. Kuharski,et al. Quantum simulations of aqueous systems , 1986 .
[56] D. Adams,et al. Computer simulation of ionic systems: The distorting effects of the boundary conditions , 1979 .
[57] R. W. Hall,et al. A Path Integral Monte Carlo Study of Liquid Neon and the Quantum Effective Pair Potential , 1984 .
[58] G. Lepoutre. Colloque Weyl: a short history , 1984 .
[59] J. Kroh,et al. Statistical approach to localized states A review of recent theoretical research institute of applied radiation chemistry , 1981 .
[60] J. Doll,et al. A Monte Carlo method for quantum Boltzmann statistical mechanics using Fourier representations of path integrals , 1984 .
[61] R. Feynman,et al. Quantum Mechanics and Path Integrals , 1965 .
[62] P. Rossky. Inconsistent dielectric behaviour of proposed hamiltonian models for ionic solutions , 1983 .