Nanomechanical Switch Designs to Overcome the Surface Adhesion Energy Limit

An analytical model is developed to assess the switching energy of a nanomechanical switch. Alternative switch designs are proposed to leverage spring-restoring force to counterbalance surface adhesion force, reducing the depth of the potential energy well created by contact adhesion and thereby overcoming the surface adhesion energy limit.

[1]  Joshua R. Smith,et al.  Universal binding energy curves for metals and bimetallic interfaces , 1981 .

[2]  John R. Smith,et al.  Universal features of bonding in metals , 1983 .

[3]  J. Cognard Adhesion to gold: A review , 1984 .

[4]  J. Israelachvili Intermolecular and surface forces , 1985 .

[5]  E. Teague,et al.  Room Temperature Gold-Vacuum-Gold Tunneling Experiments. , 1978, Journal of research of the National Bureau of Standards.

[6]  John R. Smith,et al.  Adhesion at metal interfaces , 1991 .

[7]  G. Cross,et al.  Metallic adhesion and tunnelling at the atomic scale , 2000 .

[8]  Dimitrios Niarchos,et al.  Magnetic MEMS: key issues and some applications , 2003 .

[9]  Brian D. Jensen,et al.  Adhesion effects on contact opening dynamics in micromachined switches , 2005 .

[10]  B. Persson Contact mechanics for randomly rough surfaces , 2006, cond-mat/0603807.

[11]  Jun‐Bo Yoon,et al.  Fabrication and characterization of a nanoelectromechanical switch with 15-nm-thick suspension air gap , 2008 .

[12]  D. Markovic,et al.  Integrated circuit design with NEM relays , 2008, 2008 IEEE/ACM International Conference on Computer-Aided Design.

[13]  Vladimir Stojanovic,et al.  Demonstration of integrated micro-electro-mechanical switch circuits for VLSI applications , 2010, 2010 IEEE International Solid-State Circuits Conference - (ISSCC).

[14]  Tsu-Jae King Liu,et al.  Design, Optimization, and Scaling of MEM Relays for Ultra-Low-Power Digital Logic , 2011, IEEE Transactions on Electron Devices.

[15]  Elad Alon,et al.  Demonstration of Integrated Micro-Electro-Mechanical Relay Circuits for VLSI Applications , 2011, IEEE Journal of Solid-State Circuits.

[16]  Daniel G. Saab,et al.  Ultra-low power NEMS FPGA , 2012, 2012 IEEE/ACM International Conference on Computer-Aided Design (ICCAD).

[17]  Daniel Grogg,et al.  Fundamental scaling properties of electro-mechanical switches , 2012 .

[18]  R. Howe,et al.  Integration of Nanoelectromechanical Relays With Silicon nMOS , 2012, IEEE Transactions on Electron Devices.

[19]  K. Kuhn,et al.  Scaling Limits of Electrostatic Nanorelays , 2013, IEEE Transactions on Electron Devices.

[20]  M. Mehregany,et al.  Silicon carbide (SiC) nanoelectromechanical switches and logic gates with long cycles and robust performance in ambient air and at high temperature , 2013, 2013 IEEE International Electron Devices Meeting.

[21]  T. Liu,et al.  Adhesive Force Characterization for MEM Logic Relays With Sub-Micron Contacting Regions , 2014, Journal of Microelectromechanical Systems.

[22]  Tsu-Jae King Liu,et al.  Hybrid CMOS/BEOL-NEMS technology for ultra-low-power IC applications , 2014, 2014 IEEE International Electron Devices Meeting.

[23]  Gianluca Piazza,et al.  Sub-1-volt Piezoelectric Nanoelectromechanical Relays With Millivolt Switching Capability , 2014, IEEE Electron Device Letters.