A proposition of iterative LMI method for static output feedback control of continuous-time LTI systems

In this paper, we propose an iterative linear matrix inequality (LMI) approach to design static output feedback (SOF) controllers for continuous-time linear time-invariant (LTI) systems. The method suggested in this paper can be viewed as a version of some previous iterative LMI methods. Although the proposed method cannot always provide improved results in comparison with the previous one, it can be used as a less conservative alternative in some cases. In addition, it can be combined with the previous algorithm to improve the results. Finally, an example is gSiven to demonstrate the validity of the proposed methods.

[1]  Jos F. Sturm,et al.  A Matlab toolbox for optimization over symmetric cones , 1999 .

[2]  Mohamed Boutayeb,et al.  Static output feedback stabilization with H/sub /spl infin// performance for linear discrete-time systems , 2005, IEEE Transactions on Automatic Control.

[3]  Johan Löfberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004 .

[4]  Germain Garcia,et al.  Stabilization of discrete time linear systems by static output feedback , 2001, IEEE Trans. Autom. Control..

[5]  D. Henrion,et al.  Solving polynomial static output feedback problems with PENBMI , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[6]  James Lam,et al.  Static Output Feedback Stabilization: An ILMI Approach , 1998, Autom..

[7]  Dimitri Peaucelle,et al.  Ellipsoidal sets for resilient and robust static output-feedback , 2005, IEEE Transactions on Automatic Control.

[8]  Qing-Guo Wang,et al.  An Improved ILMI Method for Static Output Feedback Control With Application to Multivariable PID Control , 2006, IEEE Transactions on Automatic Control.

[9]  Boris Polyak,et al.  Mixed LMI/randomized methods for static output feedback control design , 2010, Proceedings of the 2010 American Control Conference.

[10]  Wook Hyun Kwon,et al.  Sufficient LMI conditions for the H/sub /spl infin// output feedback stabilization of linear discrete-time systems , 2004, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[11]  Ricardo C. L. F. Oliveira,et al.  LMI Relaxations for Reduced-Order Robust ${\cal H}_{\infty}$ Control of Continuous-Time Uncertain Linear Systems , 2012, IEEE Transactions on Automatic Control.

[12]  L. Ghaoui,et al.  A cone complementarity linearization algorithm for static output-feedback and related problems , 1997, IEEE Trans. Autom. Control..

[13]  Guang-Hong Yang,et al.  Robust static output feedback control synthesis for linear continuous systems with polytopic uncertainties , 2013, Autom..

[14]  Stephen P. Boyd,et al.  Linear Matrix Inequalities in Systems and Control Theory , 1994 .

[15]  D. Peaucelle,et al.  An efficient numerical solution for H2 static output feedback synthesis , 2001, 2001 European Control Conference (ECC).

[16]  Michel Verhaegen,et al.  Robust output-feedback controller design via local BMI optimization , 2004, Autom..

[17]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[18]  Vojtech Veselý,et al.  A necessary and sufficient condition for static output feedback stabilizability of linear discrete-time systems , 2003, Kybernetika.

[19]  Karolos M. Grigoriadis,et al.  A unified algebraic approach to linear control design , 1998 .

[20]  Guang-Hong Yang,et al.  Static Output Feedback Control Synthesis for Linear Systems With Time-Invariant Parametric Uncertainties , 2007, IEEE Transactions on Automatic Control.

[21]  Adrian S. Lewis,et al.  HIFOO - A MATLAB package for fixed-order controller design and H ∞ optimization , 2006 .

[22]  Alexandre Trofino,et al.  Sufficient LMI conditions for output feedback control problems , 1999, IEEE Trans. Autom. Control..

[23]  Ian Postlethwaite,et al.  Static output feedback stabilisation with H∞ performance for a class of plants , 2001, Syst. Control. Lett..

[24]  Atsushi Fujimori Optimization of static output feedback using substitutive LMI formulation , 2004, IEEE Transactions on Automatic Control.

[25]  John B. Moore,et al.  A Newton-like method for solving rank constrained linear matrix inequalities , 2006, 2004 43rd IEEE Conference on Decision and Control (CDC) (IEEE Cat. No.04CH37601).

[26]  Carlos E. de Souza,et al.  A necessary and sufficient condition for output feedback stabilizability , 1995, Autom..

[27]  Olivier Bachelier,et al.  Static output feedback design for uncertain linear discrete time systems , 2004, IMA J. Math. Control. Inf..