Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors
暂无分享,去创建一个
[1] R. Gilmore. Topological analysis of chaotic dynamical systems , 1998 .
[2] Jaume Llibre,et al. Formal and Analytic Integrability of the Rossler System , 2007, Int. J. Bifurc. Chaos.
[3] L. A. Belyakov. Bifurcation set in a system with homoclinic saddle curve , 1980 .
[4] Raymond Kapral,et al. Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .
[5] Carles Simó,et al. Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .
[6] L. Chua,et al. Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .
[7] M. N. Vrahatis,et al. Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.
[8] Svetoslav Nikolov,et al. New Results about Route to Chaos in Rossler System , 2004, Int. J. Bifurc. Chaos.
[9] Roberto Barrio,et al. A three-parametric study of the Lorenz model , 2007 .
[10] Localization of periodic orbits of the Rössler system under variation of its parameters , 2007 .
[11] Zbigniew Galias,et al. Counting Low-Period Cycles for Flows , 2006, Int. J. Bifurc. Chaos.
[12] P. Zgliczynski. Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .
[13] Roberto Barrio,et al. Spurious structures in chaos indicators maps , 2009 .
[14] A. Wolf,et al. Determining Lyapunov exponents from a time series , 1985 .
[15] O. Rössler. An equation for continuous chaos , 1976 .
[16] C. Letellier,et al. Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization. , 1995, Chaos.
[17] N. Packard,et al. POWER SPECTRA AND MIXING PROPERTIES OF STRANGE ATTRACTORS , 1980 .
[18] Roberto Barrio,et al. Sensitivity Analysis of ODES/DAES Using the Taylor Series Method , 2005, SIAM J. Sci. Comput..
[19] Roberto Barrio,et al. Painting Chaos: a Gallery of Sensitivity Plots of Classical Problems , 2006, Int. J. Bifurc. Chaos.
[20] Alejandro J. Rodríguez-Luis,et al. Resonances of Periodic orbits in RÖssler System in Presence of a Triple-Zero bifurcation , 2007, Int. J. Bifurc. Chaos.
[21] Nicholas B. Tufillaro,et al. Experimental approach to nonlinear dynamics and chaos , 1992, Studies in nonlinearity.
[22] L. Chua,et al. Methods of qualitative theory in nonlinear dynamics , 1998 .
[23] Kjetil Wormnes,et al. Application of the 0-1 Test for Chaos to Experimental Data , 2007, SIAM J. Appl. Dyn. Syst..
[24] Hopf bifurcations and period-doubling transitions in Rössler model , 1985 .
[25] Jaume Llibre,et al. 3-dimensional Hopf bifurcation via averaging theory , 2006 .
[26] Marco Monti,et al. Characterization of the Rössler System in Parameter Space , 2007, Int. J. Bifurc. Chaos.
[27] Willy Govaerts,et al. MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.
[28] Georg A. Gottwald,et al. A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.
[29] Yu. A. Kuznetsov,et al. NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .
[30] Elena Lega,et al. On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows , 2002 .
[31] Oscar De Feo,et al. Qualitative Resonance of SHIL'nikov-like Strange attractors, Part II: Mathematical Analysis , 2004, Int. J. Bifurc. Chaos.
[32] Joan S. Birman,et al. Knotted periodic orbits in dynamical systems—I: Lorenz's equation , 1983 .
[33] Pierre Gaspard,et al. What can we learn from homoclinic orbits in chaotic dynamics? , 1983 .
[34] Roberto Barrio,et al. VSVO formulation of the taylor method for the numerical solution of ODEs , 2005 .
[35] Roberto Barrio,et al. Sensitivity tools vs. Poincaré sections , 2005 .
[36] Colin Sparrow,et al. Local and global behavior near homoclinic orbits , 1984 .
[37] C. Letellier,et al. Inequivalent topologies of chaos in simple equations , 2006 .
[38] Gian Mario Maggio,et al. Bifurcations in the Colpitts oscillator: from Theory to Practice , 2003, Int. J. Bifurc. Chaos.
[39] Giacomo Innocenti,et al. A global qualitative view of bifurcations and dynamics in the Rössler system , 2008 .