Qualitative analysis of the Rössler equations: Bifurcations of limit cycles and chaotic attractors

In this paper we study different aspects of the paradigmatic Rossler model. We perform a detailed study of the local and global bifurcations of codimension one and two of limit cycles. This provides us a global idea of the three-parametric evolution of the system. We also study the regions of parameters where we may expect a chaotic behavior by the use of different Chaos Indicators. The combination of the different techniques gives an idea of the different routes to chaos and the different kinds of chaotic attractors we may found in this system.

[1]  R. Gilmore Topological analysis of chaotic dynamical systems , 1998 .

[2]  Jaume Llibre,et al.  Formal and Analytic Integrability of the Rossler System , 2007, Int. J. Bifurc. Chaos.

[3]  L. A. Belyakov Bifurcation set in a system with homoclinic saddle curve , 1980 .

[4]  Raymond Kapral,et al.  Bifurcation phenomena near homoclinic systems: A two-parameter analysis , 1984 .

[5]  Carles Simó,et al.  Phase space structure of multi-dimensional systems by means of the mean exponential growth factor of nearby orbits , 2003 .

[6]  L. Chua,et al.  Methods of Qualitative Theory in Nonlinear Dynamics (Part II) , 2001 .

[7]  M. N. Vrahatis,et al.  Detecting order and chaos in Hamiltonian systems by the SALI method , 2004, nlin/0404058.

[8]  Svetoslav Nikolov,et al.  New Results about Route to Chaos in Rossler System , 2004, Int. J. Bifurc. Chaos.

[9]  Roberto Barrio,et al.  A three-parametric study of the Lorenz model , 2007 .

[10]  Localization of periodic orbits of the Rössler system under variation of its parameters , 2007 .

[11]  Zbigniew Galias,et al.  Counting Low-Period Cycles for Flows , 2006, Int. J. Bifurc. Chaos.

[12]  P. Zgliczynski Computer assisted proof of chaos in the Rössler equations and in the Hénon map , 1997 .

[13]  Roberto Barrio,et al.  Spurious structures in chaos indicators maps , 2009 .

[14]  A. Wolf,et al.  Determining Lyapunov exponents from a time series , 1985 .

[15]  O. Rössler An equation for continuous chaos , 1976 .

[16]  C. Letellier,et al.  Unstable periodic orbits and templates of the Rossler system: Toward a systematic topological characterization. , 1995, Chaos.

[17]  N. Packard,et al.  POWER SPECTRA AND MIXING PROPERTIES OF STRANGE ATTRACTORS , 1980 .

[18]  Roberto Barrio,et al.  Sensitivity Analysis of ODES/DAES Using the Taylor Series Method , 2005, SIAM J. Sci. Comput..

[19]  Roberto Barrio,et al.  Painting Chaos: a Gallery of Sensitivity Plots of Classical Problems , 2006, Int. J. Bifurc. Chaos.

[20]  Alejandro J. Rodríguez-Luis,et al.  Resonances of Periodic orbits in RÖssler System in Presence of a Triple-Zero bifurcation , 2007, Int. J. Bifurc. Chaos.

[21]  Nicholas B. Tufillaro,et al.  Experimental approach to nonlinear dynamics and chaos , 1992, Studies in nonlinearity.

[22]  L. Chua,et al.  Methods of qualitative theory in nonlinear dynamics , 1998 .

[23]  Kjetil Wormnes,et al.  Application of the 0-1 Test for Chaos to Experimental Data , 2007, SIAM J. Appl. Dyn. Syst..

[24]  Hopf bifurcations and period-doubling transitions in Rössler model , 1985 .

[25]  Jaume Llibre,et al.  3-dimensional Hopf bifurcation via averaging theory , 2006 .

[26]  Marco Monti,et al.  Characterization of the Rössler System in Parameter Space , 2007, Int. J. Bifurc. Chaos.

[27]  Willy Govaerts,et al.  MATCONT: A MATLAB package for numerical bifurcation analysis of ODEs , 2003, TOMS.

[28]  Georg A. Gottwald,et al.  A new test for chaos in deterministic systems , 2004, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[29]  Yu. A. Kuznetsov,et al.  NUMERICAL DETECTION AND CONTINUATION OF CODIMENSION-TWO HOMOCLINIC BIFURCATIONS , 1994 .

[30]  Elena Lega,et al.  On the Relationship Between Fast Lyapunov Indicator and Periodic Orbits for Continuous Flows , 2002 .

[31]  Oscar De Feo,et al.  Qualitative Resonance of SHIL'nikov-like Strange attractors, Part II: Mathematical Analysis , 2004, Int. J. Bifurc. Chaos.

[32]  Joan S. Birman,et al.  Knotted periodic orbits in dynamical systems—I: Lorenz's equation , 1983 .

[33]  Pierre Gaspard,et al.  What can we learn from homoclinic orbits in chaotic dynamics? , 1983 .

[34]  Roberto Barrio,et al.  VSVO formulation of the taylor method for the numerical solution of ODEs , 2005 .

[35]  Roberto Barrio,et al.  Sensitivity tools vs. Poincaré sections , 2005 .

[36]  Colin Sparrow,et al.  Local and global behavior near homoclinic orbits , 1984 .

[37]  C. Letellier,et al.  Inequivalent topologies of chaos in simple equations , 2006 .

[38]  Gian Mario Maggio,et al.  Bifurcations in the Colpitts oscillator: from Theory to Practice , 2003, Int. J. Bifurc. Chaos.

[39]  Giacomo Innocenti,et al.  A global qualitative view of bifurcations and dynamics in the Rössler system , 2008 .