A model-based approach for estimation of two-dimensional maximum entropy power spectra

A stochastic model-based approach is presented for estimation of the two-dimensional maximum entropy power spectrum (MEPS) from given finite uniform array data. The method consists of fitting an appropriate two-dimensional noncausal Gaussian-Markov random field (GMRF) model to the given data using the maximum likelihood (ML) technique for parameter estimation. The nonlinear criterion function used for ML estimation is similar in structure to the function arising in the deterministic approach of Lang and McClellan. The model-based approach provides new insights into the two-dimensional MEPS estimation problem. For example, using the asymptotic normality of ML estimates, we derive simultaneous confidence bands for the estimated MEPS. It turns out that when the true correlations are generated by a noncausal GMRF model, the two-dimensional MEPS can be obtained by solving linear equations. This approach also suggests techniques for realizing two-dimensional GMRF models from the given correlation data. Several numerical examples are given to illustrate the usefulness of the approach.

[1]  R. Chellappa,et al.  On two-dimensional Markov spectral estimation , 1983 .

[2]  X. Guyon Parameter estimation for a stationary process on a d-dimensional lattice , 1982 .

[3]  Rama Chellappa,et al.  Estimation and choice of neighbors in spatial-interaction models of images , 1983, IEEE Trans. Inf. Theory.

[4]  J. McClellan,et al.  Multidimensional MEM spectral estimation , 1982 .

[5]  K. Ord Estimation Methods for Models of Spatial Interaction , 1975 .

[6]  Yu. A. Rosanov On Gaussian Fields with Given Conditional Distributions , 1967 .

[7]  L. Campbell Equivalence of Gauss's Principle and Minimum Discrimination Information Estimation of Probabilities , 1970 .

[8]  P. Whittle ON STATIONARY PROCESSES IN THE PLANE , 1954 .

[9]  Adriaan van den Bos,et al.  Alternative interpretation of maximum entropy spectral analysis (Corresp.) , 1971, IEEE Trans. Inf. Theory.

[10]  H. Künsch Thermodynamics and statistical analysis of Gaussian random fields , 1981 .

[11]  B. Dickinson,et al.  Two-dimensional Markov spectrum estimates need not exist , 1980, IEEE Trans. Inf. Theory.

[12]  Marcello Pagano,et al.  Simultaneous confidence bands for autoregressive spectra , 1984 .

[13]  A. Papoulis Maximum entropy and spectral estimation: A review , 1981 .

[14]  J. Besag,et al.  On the estimation and testing of spatial interaction in Gaussian lattice processes , 1975 .

[15]  Jae Lim,et al.  A new algorithm for two-dimensional maximum entropy power spectrum estimation , 1981 .

[16]  J. Capon High-resolution frequency-wavenumber spectrum analysis , 1969 .

[17]  John W. Woods,et al.  Two-dimensional Markov spectral estimation , 1976, IEEE Trans. Inf. Theory.

[18]  Azriel Rosenfeld,et al.  A Comparative Study of Texture Measures for Terrain Classification , 1975, IEEE Transactions on Systems, Man, and Cybernetics.

[19]  John W. Woods,et al.  Two-dimensional discrete Markovian fields , 1972, IEEE Trans. Inf. Theory.

[20]  J.H. McClellan,et al.  Multidimensional spectral estimation , 1982, Proceedings of the IEEE.

[21]  T. Ulrich,et al.  Maximum entropy spectral analy-sis and autoregressive decomposition , 1975 .

[22]  A.K. Jain,et al.  Advances in mathematical models for image processing , 1981, Proceedings of the IEEE.

[23]  R. Kashyap Inconsistency of the AIC rule for estimating the order of autoregressive models , 1980 .

[24]  Stephen J. Wernecke,et al.  Maximum Entropy Image Reconstruction , 1977, IEEE Transactions on Computers.

[25]  Surendra Ranganath,et al.  Application of two dimensional spectral estimation in image restoration , 1981, ICASSP.