Progressive Tracking of Isosurfaces in Time-Varying Scalar Fields

Scientific simulations and measurements often involve time dependent processes and produce time dependent data sets. Isosurface extraction is an important tool for visualizing three or twodimensional time varying scalar fields defined by such data. Nevertheless, the size of the data and the dynamic nature impose difficulty in devising efficient and effective time dependent isosurface extraction techniques. In this paper, we describe a progressive algorithm for time dependent isosurface extraction. The algorithm maintains efficiency in time and space by exploiting coherency in both temporal and spatial dimensions of the data, as well as in the function values domain. It creates the isosurface of consecutive time steps progressively from previous time steps allowing time critical utilization. In addition, it can track evolving isosurface components and identify topology change events such as merge, split, vanish and create. This information is used to define several visualization techniques such as tracking of individual components, which help gain better understanding of the dynamic structure of the data.

[1]  Valerio Pascucci,et al.  Contour trees and small seed sets for isosurface traversal , 1997, SCG '97.

[2]  Koji Koyamada,et al.  Automatic Isosurface Propagation Using an Extrema Graph and Sorted Boundary Cell Lists , 1995, IEEE Trans. Vis. Comput. Graph..

[3]  Valerio Pascucci,et al.  The contour spectrum , 1997, Proceedings. Visualization '97 (Cat. No. 97CB36155).

[4]  David C. Banks,et al.  Extracting iso-valued features in 4-dimensional scalar fields , 1998, VVS '98.

[5]  Han-Wei Shen,et al.  A Near Optimal Isosurface Extraction Algorithm Using the Span Space , 1996, IEEE Trans. Vis. Comput. Graph..

[6]  Valerio Pascucci,et al.  Seed Sets and Search Structures for Optimal Isocontour Extraction , 1999 .

[7]  Han-Wei Shen Isosurface extraction in time-varying fields using a temporal hierarchical index tree , 1998 .

[8]  Xin Wang,et al.  Tracking and Visualizing Turbulent 3D Features , 1997, IEEE Trans. Vis. Comput. Graph..

[9]  Deborah Silver,et al.  Object-oriented visualization , 1995, IEEE Computer Graphics and Applications.

[10]  Baba C. Vemuri,et al.  Shape Modeling with Front Propagation: A Level Set Approach , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[11]  Charles D. Hansen,et al.  Isosurfacing in span space with utmost efficiency (ISSUE) , 1996, Proceedings of Seventh Annual IEEE Visualization '96.

[12]  Valerio Pascucci,et al.  Fast isocontouring for improved interactivity , 1996, VVS '96.

[13]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods , 1999 .

[14]  Han-Wei Shen,et al.  Sweeping simplices: a fast iso-surface extraction algorithm for unstructured grids , 1995, Proceedings Visualization '95.

[15]  Edwin H. Blake,et al.  The Mesh Propagation Algorithm for Isosurface Construction , 1994, Comput. Graph. Forum.

[16]  Jack Snoeyink,et al.  Computing contour trees in all dimensions , 2000, SODA '00.

[17]  David C. Banks,et al.  Extracting iso-valued features in 4-dimensional scalar fields , 1998, IEEE Symposium on Volume Visualization (Cat. No.989EX300).

[18]  Paolo Cignoni,et al.  Speeding Up Isosurface Extraction Using Interval Trees , 1997, IEEE Trans. Vis. Comput. Graph..

[19]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1992, TOGS.

[20]  William E. Lorensen,et al.  Marching cubes: A high resolution 3D surface construction algorithm , 1987, SIGGRAPH.

[21]  Jane Wilhelms,et al.  Octrees for faster isosurface generation , 1990, SIGGRAPH 1990.

[22]  Charles D. Hansen,et al.  Isosurface extraction in time-varying fields using a Temporal Branch-on-Need Tree (T-BON) , 1999, Proceedings Visualization '99 (Cat. No.99CB37067).