Unique Information and Secret Key Decompositions

The unique information (UI) is an information measure that quantifies a deviation from the Blackwell order. We have recently shown that this quantity is an upper bound on the one-way secret key rate. In this paper, we prove a triangle inequality for the UI, which implies that the UI is never greater than one of the best known upper bounds on the two-way secret key rate. We conjecture that the UI lower bounds the two-way rate and discuss implications of the conjecture.

[1]  U. Maurer,et al.  Secret key agreement by public discussion from common information , 1993, IEEE Trans. Inf. Theory.

[2]  Michal Horodecki,et al.  Unifying Classical and Quantum Key Distillation , 2007, TCC.

[3]  Nils Bertschinger,et al.  The Blackwell relation defines no lattice , 2014, 2014 IEEE International Symposium on Information Theory.

[4]  Imre Csiszár,et al.  Information Theory - Coding Theorems for Discrete Memoryless Systems, Second Edition , 2011 .

[5]  Amin Gohari,et al.  Coding for Positive Rate in the Source Model Key Agreement Problem , 2017, IEEE Transactions on Information Theory.

[6]  D. Blackwell Equivalent Comparisons of Experiments , 1953 .

[7]  Ueli Maurer,et al.  Unbreakable Keys from Random Noise , 2007 .

[8]  Venkat Anantharam,et al.  Information-Theoretic Key Agreement of Multiple Terminals—Part I , 2010, IEEE Transactions on Information Theory.

[9]  Amin Gohari,et al.  On Achieving a Positive Rate in the Source Model Key Agreement Problem , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).

[10]  Imre Csiszár,et al.  Broadcast channels with confidential messages , 1978, IEEE Trans. Inf. Theory.

[11]  Ueli Maurer,et al.  Unconditionally Secure Key Agreement and the Intrinsic Conditional Information , 1999, IEEE Trans. Inf. Theory.

[12]  Renato Renner,et al.  New Bounds in Secret-Key Agreement: The Gap between Formation and Secrecy Extraction , 2003, EUROCRYPT.

[13]  Randall D. Beer,et al.  Nonnegative Decomposition of Multivariate Information , 2010, ArXiv.

[14]  Dirk Oliver Theis,et al.  Bivariate Partial Information Decomposition: The Optimization Perspective , 2017, Entropy.

[15]  Eckehard Olbrich,et al.  Quantifying unique information , 2013, Entropy.

[16]  Rudolf Ahlswede,et al.  Common randomness in information theory and cryptography - I: Secret sharing , 1993, IEEE Trans. Inf. Theory.

[17]  Min-Hsiu Hsieh,et al.  Distributions Attaining Secret Key at a Rate of the Conditional Mutual Information , 2015, CRYPTO.

[18]  Amin Gohari,et al.  From source model to quantum key distillation: An improved upper bound , 2014, 2014 Iran Workshop on Communication and Information Theory (IWCIT).

[19]  Eckehard Olbrich,et al.  Reconsidering unique information: Towards a multivariate information decomposition , 2014, 2014 IEEE International Symposium on Information Theory.

[20]  S. Wolf,et al.  From weak to strong information-theoretic key agreement , 2000, 2000 IEEE International Symposium on Information Theory (Cat. No.00CH37060).

[21]  Renato Renner,et al.  A property of the intrinsic mutual information , 2003, IEEE International Symposium on Information Theory, 2003. Proceedings..

[22]  Eckehard Olbrich,et al.  Unique Informations and Deficiencies , 2018, 2018 56th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[23]  Guido Montúfar,et al.  Computing the Unique Information , 2017, 2018 IEEE International Symposium on Information Theory (ISIT).