Strongly aperiodic subshifts of finite type on hyperbolic groups
暂无分享,去创建一个
[1] Brandon Seward. Every action of a non-amenable group is the factor of a small action , 2013, 1311.0738.
[2] Michaël Rao,et al. An aperiodic set of 11 Wang tiles , 2015, ArXiv.
[3] A. O. Houcine. On hyperbolic groups , 2006 .
[4] Antonio Machì,et al. Cellular automata and groups (Springer Monographs in Mathematics) , 2011 .
[5] Max Dehn,et al. Papers on Group Theory and Topology , 1987 .
[6] Shmuel Weinberger,et al. Aperiodic tilings, positive scalar curvature, and amenability of spaces , 1992 .
[7] Shahar Mozes,et al. Aperiodic tilings , 1997 .
[8] de Ng Dick Bruijn. Sequences of zeros and ones generated by special production rules , 1981 .
[9] Daniel Gooch,et al. Communications of the ACM , 2011, XRDS.
[10] Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.
[11] David B. A. Epstein,et al. Word processing in groups , 1992 .
[12] C. Goodman-Strauss,et al. Strongly aperiodic subshifts on surface groups , 2015, 1510.06439.
[13] Shahar Mozes,et al. Aperiodic tilings of the hyperbolic plane by convex polygons , 1998 .
[14] D. Wise,et al. Growth of quasiconvex subgroups , 2016, Mathematical Proceedings of the Cambridge Philosophical Society.
[15] S. Piantadosi. Symbolic dynamics on free groups , 2007 .
[16] John Milnor,et al. A note on curvature and fundamental group , 1968 .
[17] A. Penland,et al. Periodic Points on Shifts of Finite Type and Commensurability Invariants of Groups , 2015, 1502.03195.
[18] Michel Coornaert,et al. Cellular Automata and Groups , 2010, Encyclopedia of Complexity and Systems Science.
[19] S. Mozes. Tilings, substitution systems and dynamical systems generated by them , 1989 .
[20] Andrew S. Glassner,et al. Aperiodic Tiling , 1998, IEEE Computer Graphics and Applications.
[21] de Ng Dick Bruijn,et al. Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .
[22] S. Barbieri. A geometric simulation theorem on direct products of finitely generated groups , 2017, Discrete Analysis.
[23] Z. Sela,et al. The isomorphism problem for hyperbolic groups I , 1995 .
[24] Danny Calegari. The Ergodic Theory of Hyperbolic Groups , 2011, 1111.0029.
[25] 友紀子 中川. SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.
[26] Emmanuel Jeandel,et al. Aperiodic Subshifts on Polycyclic Groups , 2015, ArXiv.
[27] David Bruce Cohen,et al. The large scale geometry of strongly aperiodic subshifts of finite type , 2014, 1412.4572.
[28] Chaim Goodman-Strauss. A strongly aperiodic set of tiles in the hyperbolic plane , 2005 .
[29] R. Robinson. Undecidability and nonperiodicity for tilings of the plane , 1971 .
[30] C. Goodman-Strauss. MATCHING RULES AND SUBSTITUTION TILINGS , 1998 .
[31] R. Lyndon. On Burnside’s problem , 1954 .
[32] R. Lathe. Phd by thesis , 1988, Nature.
[33] J. Cannon. The combinatorial structure of cocompact discrete hyperbolic groups , 1984 .
[34] N. D. Bruijn. Algebraic theory of Penrose''s non-periodic tilings , 1981 .
[35] Joris,et al. Commentarii Mathematici Helvetici , 2008 .
[36] Combable functions, quasimorphisms, and the central limit theorem , 2008, Ergodic Theory and Dynamical Systems.
[37] G. Swarup. On the cut point conjecture , 1996 .
[38] Brian H. Bowditch,et al. Cut points and canonical splittings of hyperbolic groups , 1998 .
[39] Hao Wang,et al. Proving theorems by pattern recognition I , 1960, Commun. ACM.
[40] Charles Radin,et al. The pinwheel tilings of the plane , 1994 .
[41] M. Coornaert. Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov. , 1993 .
[42] 野村栄一,et al. 2 , 1900, The Hatak Witches.
[43] M. Swift,et al. MOD , 2020, Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems.
[44] B. Kleiner,et al. Quasi-hyperbolic planes in hyperbolic groups , 2003, math/0301267.
[45] E. M. Hartwell. Boston , 1906 .
[46] Brandon Seward,et al. Burnside's Problem, spanning trees, and tilings , 2011, 1104.1231.
[47] Symbolic dynamics , 2008, Scholarpedia.
[48] S. Barbieri,et al. A generalization of the simulation theorem for semidirect products , 2016, Ergodic Theory and Dynamical Systems.
[49] Emmanuel Jeandel,et al. Aperiodic Subshifts of Finite Type on Groups , 2015 .
[50] Jarkko Kari,et al. A small aperiodic set of Wang tiles , 1996, Discret. Math..
[51] Horofunctions and symbolic dynamics on Gromov hyperbolic groups , 2001, Glasgow Mathematical Journal.
[52] Robert L. Berger. The undecidability of the domino problem , 1966 .
[53] Raphael M. Robinson. Undecidable tiling problems in the hyperbolic plane , 1978 .
[54] Nicolas Ollinger,et al. Combinatorial Substitutions and Sofic Tilings , 2010, JAC.
[55] B. M. Fulk. MATH , 1992 .
[56] Einzelwerken Muster,et al. Invent , 2021, Encyclopedic Dictionary of Archaeology.
[57] Symbolic coding for the geodesic flow associated to a word hyperbolic group , 2002 .
[58] E. Bohl,et al. Discrete and continuous dynamical systems , 1996 .