Strongly aperiodic subshifts of finite type on hyperbolic groups

We prove that a hyperbolic group admits a strongly aperiodic subshift of finite type if and only if it has at most one end.

[1]  Brandon Seward Every action of a non-amenable group is the factor of a small action , 2013, 1311.0738.

[2]  Michaël Rao,et al.  An aperiodic set of 11 Wang tiles , 2015, ArXiv.

[3]  A. O. Houcine On hyperbolic groups , 2006 .

[4]  Antonio Machì,et al.  Cellular automata and groups (Springer Monographs in Mathematics) , 2011 .

[5]  Max Dehn,et al.  Papers on Group Theory and Topology , 1987 .

[6]  Shmuel Weinberger,et al.  Aperiodic tilings, positive scalar curvature, and amenability of spaces , 1992 .

[7]  Shahar Mozes,et al.  Aperiodic tilings , 1997 .

[8]  de Ng Dick Bruijn Sequences of zeros and ones generated by special production rules , 1981 .

[9]  Daniel Gooch,et al.  Communications of the ACM , 2011, XRDS.

[10]  Adv , 2019, International Journal of Pediatrics and Adolescent Medicine.

[11]  David B. A. Epstein,et al.  Word processing in groups , 1992 .

[12]  C. Goodman-Strauss,et al.  Strongly aperiodic subshifts on surface groups , 2015, 1510.06439.

[13]  Shahar Mozes,et al.  Aperiodic tilings of the hyperbolic plane by convex polygons , 1998 .

[14]  D. Wise,et al.  Growth of quasiconvex subgroups , 2016, Mathematical Proceedings of the Cambridge Philosophical Society.

[15]  S. Piantadosi Symbolic dynamics on free groups , 2007 .

[16]  John Milnor,et al.  A note on curvature and fundamental group , 1968 .

[17]  A. Penland,et al.  Periodic Points on Shifts of Finite Type and Commensurability Invariants of Groups , 2015, 1502.03195.

[18]  Michel Coornaert,et al.  Cellular Automata and Groups , 2010, Encyclopedia of Complexity and Systems Science.

[19]  S. Mozes Tilings, substitution systems and dynamical systems generated by them , 1989 .

[20]  Andrew S. Glassner,et al.  Aperiodic Tiling , 1998, IEEE Computer Graphics and Applications.

[21]  de Ng Dick Bruijn,et al.  Algebraic theory of Penrose's non-periodic tilings of the plane. II , 1981 .

[22]  S. Barbieri A geometric simulation theorem on direct products of finitely generated groups , 2017, Discrete Analysis.

[23]  Z. Sela,et al.  The isomorphism problem for hyperbolic groups I , 1995 .

[24]  Danny Calegari The Ergodic Theory of Hyperbolic Groups , 2011, 1111.0029.

[25]  友紀子 中川 SoC , 2021, Journal of Japan Society for Fuzzy Theory and Intelligent Informatics.

[26]  Emmanuel Jeandel,et al.  Aperiodic Subshifts on Polycyclic Groups , 2015, ArXiv.

[27]  David Bruce Cohen,et al.  The large scale geometry of strongly aperiodic subshifts of finite type , 2014, 1412.4572.

[28]  Chaim Goodman-Strauss A strongly aperiodic set of tiles in the hyperbolic plane , 2005 .

[29]  R. Robinson Undecidability and nonperiodicity for tilings of the plane , 1971 .

[30]  C. Goodman-Strauss MATCHING RULES AND SUBSTITUTION TILINGS , 1998 .

[31]  R. Lyndon On Burnside’s problem , 1954 .

[32]  R. Lathe Phd by thesis , 1988, Nature.

[33]  J. Cannon The combinatorial structure of cocompact discrete hyperbolic groups , 1984 .

[34]  N. D. Bruijn Algebraic theory of Penrose''s non-periodic tilings , 1981 .

[35]  Joris,et al.  Commentarii Mathematici Helvetici , 2008 .

[36]  Combable functions, quasimorphisms, and the central limit theorem , 2008, Ergodic Theory and Dynamical Systems.

[37]  G. Swarup On the cut point conjecture , 1996 .

[38]  Brian H. Bowditch,et al.  Cut points and canonical splittings of hyperbolic groups , 1998 .

[39]  Hao Wang,et al.  Proving theorems by pattern recognition I , 1960, Commun. ACM.

[40]  Charles Radin,et al.  The pinwheel tilings of the plane , 1994 .

[41]  M. Coornaert Mesures de Patterson-Sullivan sur le bord d'un espace hyperbolique au sens de Gromov. , 1993 .

[42]  野村栄一,et al.  2 , 1900, The Hatak Witches.

[43]  M. Swift,et al.  MOD , 2020, Proceedings of the Twenty-Fifth International Conference on Architectural Support for Programming Languages and Operating Systems.

[44]  B. Kleiner,et al.  Quasi-hyperbolic planes in hyperbolic groups , 2003, math/0301267.

[45]  E. M. Hartwell Boston , 1906 .

[46]  Brandon Seward,et al.  Burnside's Problem, spanning trees, and tilings , 2011, 1104.1231.

[47]  Symbolic dynamics , 2008, Scholarpedia.

[48]  S. Barbieri,et al.  A generalization of the simulation theorem for semidirect products , 2016, Ergodic Theory and Dynamical Systems.

[49]  Emmanuel Jeandel,et al.  Aperiodic Subshifts of Finite Type on Groups , 2015 .

[50]  Jarkko Kari,et al.  A small aperiodic set of Wang tiles , 1996, Discret. Math..

[51]  Horofunctions and symbolic dynamics on Gromov hyperbolic groups , 2001, Glasgow Mathematical Journal.

[52]  Robert L. Berger The undecidability of the domino problem , 1966 .

[53]  Raphael M. Robinson Undecidable tiling problems in the hyperbolic plane , 1978 .

[54]  Nicolas Ollinger,et al.  Combinatorial Substitutions and Sofic Tilings , 2010, JAC.

[55]  B. M. Fulk MATH , 1992 .

[56]  Einzelwerken Muster,et al.  Invent , 2021, Encyclopedic Dictionary of Archaeology.

[57]  Symbolic coding for the geodesic flow associated to a word hyperbolic group , 2002 .

[58]  E. Bohl,et al.  Discrete and continuous dynamical systems , 1996 .