A family of space–time connecting discretization schemes with local impact detection for elastodynamic contact problems

Abstract We derive, formulate and analyze a new family of discretization schemes for elastodynamic contact problems which implicitly resolve the individual impact times for each node on the contact interface. Within our approach, information from the space discrete setting is incorporated into the time discretization by means of pointwise chosen parameters for the time discretization scheme. The members of this family can be interpreted as modified Newmark schemes, thus making them easily understandable and implementable. We prove that for certain parameter choices the algorithms are dissipative methods. Further, as our analysis and our numerical experiments show, a special solution dependent choice of parameters leads to a new space–time connecting discretization with a highly stable behavior of displacements, velocities and boundary stresses at the contact interface.

[1]  H. Rentz-Reichert,et al.  UG – A flexible software toolbox for solving partial differential equations , 1997 .

[2]  T. Laursen,et al.  Improved implicit integrators for transient impact problems—geometric admissibility within the conserving framework , 2002, International Journal for Numerical Methods in Engineering.

[3]  Barbara Wohlmuth,et al.  A stable energy‐conserving approach for frictional contact problems based on quadrature formulas , 2008 .

[4]  ROLF KRAUSE,et al.  A Nonsmooth Multiscale Method for Solving Frictional Two-Body Contact Problems in 2D and 3D with Multigrid Efficiency , 2008, SIAM J. Sci. Comput..

[5]  Robert L. Taylor,et al.  On a finite element method for dynamic contact/impact problems , 1993 .

[6]  Peter Deuflhard,et al.  Adaptive timestep control for the contact-stabilized Newmark method , 2011, Numerische Mathematik.

[7]  Christof Eck,et al.  Unilateral Contact Problems: Variational Methods and Existence Theorems , 2005 .

[8]  J. Moreau Numerical aspects of the sweeping process , 1999 .

[9]  R. Kornhuber,et al.  Adaptive multigrid methods for Signorini’s problem in linear elasticity , 2001 .

[10]  Rolf Krause,et al.  A time discretization scheme based on Rothe’s method for dynamical contact problems with friction , 2009 .

[11]  E. A. Repetto,et al.  Finite element analysis of nonsmooth contact , 1999 .

[12]  Patrick Laborde,et al.  Mass redistribution method for finite element contact problems in elastodynamics , 2008 .

[13]  Peter Deuflhard,et al.  A contact‐stabilized Newmark method for dynamical contact problems , 2008 .

[14]  R. Krause,et al.  Level set based multi-scale methods for large deformation contact problems , 2011 .

[15]  R. Kornhuber Adaptive monotone multigrid methods for nonlinear variational problems , 1997 .

[16]  M. Ortiz,et al.  Energy-stepping integrators in Lagrangian mechanics , 2009 .

[17]  Rolf Krause,et al.  Presentation and comparison of selected algorithms for dynamic contact based on the Newmark scheme , 2012 .

[18]  Alexandre Ern,et al.  Time-Integration Schemes for the Finite Element Dynamic Signorini Problem , 2011, SIAM J. Sci. Comput..

[19]  Nathan M. Newmark,et al.  A Method of Computation for Structural Dynamics , 1959 .

[20]  Vincent Acary,et al.  Numerical Methods for Nonsmooth Dynamical Systems: Applications in Mechanics and Electronics , 2008 .

[21]  T. Laursen,et al.  DESIGN OF ENERGY CONSERVING ALGORITHMS FOR FRICTIONLESS DYNAMIC CONTACT PROBLEMS , 1997 .

[22]  Peter Wriggers,et al.  Computational Contact Mechanics , 2002 .

[23]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[24]  A. Curnier,et al.  A finite element method for a class of contact-impact problems , 1976 .

[25]  J. Marsden,et al.  Variational Integrators and the Newmark Algorithm for Conservative and Dissipative Mechanical Systems , 2000 .

[26]  Corinna Klapproth,et al.  Adaptive numerical integration of dynamical contact problems , 2011 .

[27]  Michael Ortiz,et al.  Energy‐stepping integrators in Lagrangian mechanics , 2009 .