Limited-Feedback Low-Encoding Complexity Precoder Design for Downlink of FDD Multi-User Massive MIMO Systems

We investigate a limited feedback precoder based on symbol pairwise error probability (PEP) for a block-faded <inline-formula> <tex-math notation="LaTeX">$K \times n_{t}$ </tex-math></inline-formula> downlink multiple-input multiple-output (MIMO) channel. In the considered system, <inline-formula> <tex-math notation="LaTeX">$K=\lfloor n_{t}^{\alpha }\rfloor $ </tex-math></inline-formula> single-antenna users feedback quantized channel state information to the <inline-formula> <tex-math notation="LaTeX">$n_{t}$ </tex-math></inline-formula>-antenna transmitter using <inline-formula> <tex-math notation="LaTeX">$B$ </tex-math></inline-formula> bits per-transmit-antenna per user. We analytically show that for <inline-formula> <tex-math notation="LaTeX">$\alpha <({1}/{2})$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$B \geq 1$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n_{t}\rightarrow \infty $ </tex-math></inline-formula>, both symbol PEP and achievable rate of each of the <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> downlink users almost surely converge to the symbol PEP and achievable rate of <inline-formula> <tex-math notation="LaTeX">$K$ </tex-math></inline-formula> parallel additive white Gaussian noise (AWGN) channels, respectively. We show that the encoding complexity of the precoder is <inline-formula> <tex-math notation="LaTeX">$O(n_{t}K)$ </tex-math></inline-formula>. We also show that if channel coefficients estimated by the user are corrupted by AWGN noise, the symbol PEP and achievable rate of each user almost surely converge to the symbol PEP and achievable rate in a <italic>scaled</italic> AWGN channel with <inline-formula> <tex-math notation="LaTeX">$B>1$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$n_{t}\rightarrow \infty $ </tex-math></inline-formula>. For correlated channels, we derive a condition, which enables the proposed precoder almost surely to cancel multi-user interference for large <inline-formula> <tex-math notation="LaTeX">$n_{t}$ </tex-math></inline-formula> values. Finally, we numerically compare the bit error rate, encoding complexity, and per-user achievable rate of the proposed scheme with the existing designs.

[1]  Iain B. Collings,et al.  Large System Analysis of Linear Precoding in MISO Broadcast Channels with Confidential Messages , 2013, IEEE Journal on Selected Areas in Communications.

[2]  Robert W. Heath,et al.  An overview of limited feedback in wireless communication systems , 2008, IEEE Journal on Selected Areas in Communications.

[3]  Stefania Sesia,et al.  LTE - The UMTS Long Term Evolution , 2009 .

[4]  Wing-Kin Ma,et al.  Constant Envelope Precoding for Single-User Large-Scale MISO Channels: Efficient Precoding and Optimal Designs , 2014, IEEE Journal of Selected Topics in Signal Processing.

[5]  Robert W. Heath,et al.  Hybrid precoding for millimeter wave cellular systems with partial channel knowledge , 2013, 2013 Information Theory and Applications Workshop (ITA).

[6]  David James Love,et al.  Improved multiuser MIMO unitary precoding using partial channel state information and insights from the riemannian manifold , 2009, IEEE Transactions on Wireless Communications.

[7]  Gene H. Golub,et al.  Matrix computations (3rd ed.) , 1996 .

[8]  P. Beckmann Statistical distribution of the amplitude and phase of a multiply scattered field , 1962 .

[9]  Robert W. Heath,et al.  Equal gain transmission in multiple-input multiple-output wireless systems , 2002, Global Telecommunications Conference, 2002. GLOBECOM '02. IEEE.

[10]  Geoffrey Ye Li,et al.  An Overview of Massive MIMO: Benefits and Challenges , 2014, IEEE Journal of Selected Topics in Signal Processing.

[11]  Emre Telatar,et al.  Capacity of Multi-antenna Gaussian Channels , 1999, Eur. Trans. Telecommun..

[12]  Stephan ten Brink,et al.  Achieving near-capacity on a multiple-antenna channel , 2003, IEEE Trans. Commun..

[13]  Anders S. G. Andrae,et al.  On Global Electricity Usage of Communication Technology: Trends to 2030 , 2015 .

[14]  Josef A. Nossek,et al.  Linear transmit processing in MIMO communications systems , 2005, IEEE Transactions on Signal Processing.

[15]  B. Sundar Rajan,et al.  Constellation Constrained Capacity of Two-User Broadcast Channels , 2009, GLOBECOM 2009 - 2009 IEEE Global Telecommunications Conference.

[16]  Martin Haardt,et al.  Zero-forcing methods for downlink spatial multiplexing in multiuser MIMO channels , 2004, IEEE Transactions on Signal Processing.

[17]  Moe Z. Win,et al.  MMSE reception and successive interference cancellation for MIMO systems with high spectral efficiency , 2005, IEEE Transactions on Wireless Communications.

[18]  Vincent K. N. Lau,et al.  Phase Only RF Precoding for Massive MIMO Systems With Limited RF Chains , 2014, IEEE Transactions on Signal Processing.

[19]  Antti Tölli,et al.  Computationally Efficient Robust Beamforming for SINR Balancing in Multicell Downlink With Applications to Large Antenna Array Systems , 2013, IEEE Transactions on Communications.

[20]  Jeffrey G. Andrews,et al.  Multi-user Aware Limited Feedback for MIMO Systems , 2007 .

[21]  Ali H. Sayed,et al.  Active Antenna Selection in Multiuser MIMO Communications , 2007, IEEE Transactions on Signal Processing.

[22]  Xiaojun Yuan,et al.  Hermitian Precoding for Distributed MIMO Systems with Individual Channel State Information , 2013, IEEE Journal on Selected Areas in Communications.

[23]  A. Paulraj,et al.  MIMO Wireless Linear Precoding , 2007, IEEE Signal Processing Magazine.

[24]  Thomas L. Marzetta,et al.  Noncooperative Cellular Wireless with Unlimited Numbers of Base Station Antennas , 2010, IEEE Transactions on Wireless Communications.

[25]  Zhi Ding,et al.  Linear Precoding for MIMO Broadcast Channels With Finite-Alphabet Constraints , 2012, IEEE Transactions on Wireless Communications.

[26]  Sergey L. Loyka,et al.  Channel capacity of MIMO architecture using the exponential correlation matrix , 2001, IEEE Communications Letters.

[27]  Mérouane Debbah,et al.  Massive MIMO in the UL/DL of Cellular Networks: How Many Antennas Do We Need? , 2013, IEEE Journal on Selected Areas in Communications.

[28]  Erik G. Larsson,et al.  Massive MIMO as enabler for communications with drone swarms , 2016, 2016 International Conference on Unmanned Aircraft Systems (ICUAS).

[29]  Zhi-Quan Luo,et al.  Minimum BER block precoders for zero-forcing equalization , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[30]  Erik G. Larsson,et al.  Per-Antenna Constant Envelope Precoding for Large Multi-User MIMO Systems , 2012, IEEE Transactions on Communications.

[31]  A. Lee Swindlehurst,et al.  A vector-perturbation technique for near-capacity multiantenna multiuser communication-part I: channel inversion and regularization , 2005, IEEE Transactions on Communications.

[32]  Jeffrey G. Andrews,et al.  Performance of Orthogonal Beamforming for SDMA With Limited Feedback , 2006, IEEE Transactions on Vehicular Technology.

[33]  Rusdha Muharar,et al.  Downlink Beamforming with Transmit-Side Channel Correlation: A Large System Analysis , 2011, 2011 IEEE International Conference on Communications (ICC).

[34]  Ami Wiesel,et al.  Zero-Forcing Precoding and Generalized Inverses , 2008, IEEE Transactions on Signal Processing.

[35]  Xiang Cheng,et al.  Challenges Toward Wireless Communications for High-Speed Railway , 2014, IEEE Transactions on Intelligent Transportation Systems.

[36]  P. Viswanath,et al.  Fundamentals of Wireless Communication: The wireless channel , 2005 .

[37]  Biswajit Dutta Full-Diversity Achieving Precoding for Asymmetric MIMO Using Partial CSIT , 2013, IEEE Transactions on Communications.