Projections onto convex sets on the sphere
暂无分享,去创建一个
Alfredo N. Iusem | Orizon Pereira Ferreira | Sandor Z. Németh | O. P. Ferreira | A. Iusem | S. Németh
[1] T. Banchoff,et al. Differential Geometry of Curves and Surfaces , 2010 .
[2] I. Holopainen. Riemannian Geometry , 1927, Nature.
[3] L. Qi,et al. Conditions for Strong Ellipticity of Anisotropic Elastic Materials , 2009 .
[4] J. Hiriart-Urruty,et al. Convex analysis and minimization algorithms , 1993 .
[5] V. Rovenski,et al. Differential Geometry of Curves and Surfaces , 1952, Nature.
[6] Liping Zhang,et al. On the convergence of a modified algorithm for the spherical facility location problem , 2003, Oper. Res. Lett..
[7] G. Dahl,et al. A tensor product matrix approximation problem in quantum physics , 2007 .
[8] Rolf Walter,et al. On the metric projection onto convex sets in riemannian spaces , 1974 .
[9] Alfredo N. Iusem,et al. On pairs of vectors achieving the maximal angle of a convex cone , 2005, Math. Program..
[10] P. K. Chaudhuri,et al. Spherical Minimax Location Problem , 2001, Comput. Optim. Appl..
[11] Alfredo N. Iusem,et al. Concepts and techniques of optimization on the sphere , 2014 .
[12] Steven Thomas Smith,et al. Optimization Techniques on Riemannian Manifolds , 2014, ArXiv.
[13] Siep Weiland,et al. Singular Value Decompositions and Low Rank Approximations of Tensors , 2010, IEEE Transactions on Signal Processing.
[14] Alfredo N. Iusem,et al. Searching for critical angles in a convex cone , 2009, Math. Program..
[15] Guoliang Xue. On an open problem in spherical facility location , 2005, Numerical Algorithms.
[16] Kok Lay Teo,et al. Multivariate Polynomial Minimization and Its Application in Signal Processing , 2003, J. Glob. Optim..
[17] G. Xue. A globally convergent algorithm for facility location on a sphere , 1994 .
[18] Liqun Qi,et al. Eigenvalues of a real supersymmetric tensor , 2005, J. Symb. Comput..
[19] Zvi Drezner,et al. Minimax and maximin facility location problems on a sphere , 1983 .