Design and optimization of roof trusses using morphological indicators

The adequacy of a structure in strength, stiffness and stability can be evaluated using morphological indicators. This article establishes these indicators for volume, displacement and buckling, for roof trusses. Easy to use graphs then allow to take design decisions at the early stage of conceptual design. Although less precise than computer driven optimization methods, morphological indicators are a simple tool to choose an appropriate typology. In this article roof trusses are added to the morphological indicator theory.

[1]  Ph. Samyn,et al.  The Optimization Of A Truss Facade , 2006 .

[2]  W. P. De Wilde,et al.  Optimisation At The Conceptual Design StageWith Morphological Indicators:Design For Strength Or Design For Stiffness? , 2008 .

[3]  Chris P. Pantelides,et al.  Design of Trusses under Uncertain Loads Using Convex Models , 1998 .

[4]  Grant P. Steven,et al.  An evolutionary method for optimization of plate buckling resistance , 1998 .

[5]  Philippe Samyn,et al.  Optimum design of stayed columns with split-up cross arm , 2005, Adv. Eng. Softw..

[6]  Pierre Latteur,et al.  Optimisation et prédimensionnement des treillis, arcs, poutres et câbles sur base d'indicateurs morphologiques; application aux structures soumises en partie ou en totalité au flambement , 2000 .

[7]  W. P. De Wilde,et al.  Use of hypar-shell structures with textile reinforced cement matrix composites in lightweight constructions , 2009 .

[8]  Juozas Atkočiūnas,et al.  Optimal shakedown design of metal structures under stiffness and stability constraints , 2006 .

[9]  Sigrid Adriaenssens,et al.  Structural analysis of small span textile reinforced concrete shells with double curvature , 2009 .

[10]  L. Pyl,et al.  Four-dimensional Design And Analysis OfModular Footbridges In Developing Countries , 2012 .

[11]  Luís Simões da Silva,et al.  Design of Steel Structures: Eurocode 3: Design of Steel Structures, Part 1-1: General Rules and Rules for Buildings , 2010 .

[12]  J. Van Steirteghem,et al.  Influence Of Dynamic Loads On The OptimumDesign Of Trusses , 2006 .

[13]  Wolfgang Achtziger,et al.  Global optimization of truss topology with discrete bar areas—Part II: Implementation and numerical results , 2009, Comput. Optim. Appl..

[14]  Jan A. Snyman,et al.  Optimal design of a welded I-section frame using four conceptually different optimization algorithms , 2003 .

[15]  Ole Sigmund,et al.  Articulated mechanism design with a degree of freedom constraint , 2004 .

[16]  Thomas Vandenbergh Optimization at Conceptual Design Stage with Morphological Indicators , 2010 .

[17]  W. P. De Wilde,et al.  Limit Spans Of Cable And Arch Structures , 2012 .

[18]  Mathias Stolpe,et al.  On some fundamental properties of structural topology optimization problems , 2010 .

[19]  Valentín Quintas Ripoll Sobre las formas de mínimo volumen de las celosías de sección constante , 1992 .

[20]  M. Stolpe,et al.  Truss topology optimization with discrete design variables—Guaranteed global optimality and benchmark examples , 2007 .

[21]  Thomas Vandenbergh,et al.  Influence of stiffness constraints on optimal design of trusses using morphological indicators , 2006 .

[22]  J. Van Steirteghem,et al.  The Use Of Genetic Algorithms AndMorphological Indicators In TheOptimization Of 2D Trusses , 2004 .