A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density
暂无分享,去创建一个
[1] G. Gatica. A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .
[2] Philippe G. Ciarlet,et al. The finite element method for elliptic problems , 2002, Classics in applied mathematics.
[3] Vivette Girault,et al. Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.
[4] Gabriel N. Gatica,et al. A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows , 2011 .
[5] Norbert Heuer,et al. A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows , 2008 .
[6] G. Gatica,et al. Pseudostress-Based Mixed Finite Element Methods for the Stokes Problem in ℝ n with Dirichlet Boundary Conditions. I: A Priori Error Analysis , 2012 .
[7] Zhiqiang Cai,et al. Pseudostress–velocity formulation for incompressible Navier–Stokes equations , 2010 .
[8] R. Nicolaides. Existence, Uniqueness and Approximation for Generalized Saddle Point Problems , 1982 .
[9] Gabriel N. Gatica,et al. Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow , 2013, Numerische Mathematik.
[10] Gabriel N. Gatica,et al. Augmented Mixed Finite Element Methods for the Stationary Stokes Equations , 2008, SIAM J. Sci. Comput..
[11] Gabriel N. Gatica,et al. Augmented mixed finite element methods for a vorticity‐based velocity–pressure–stress formulation of the Stokes problem in 2D , 2011 .
[12] G. Gatica,et al. A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis , 2004 .
[13] Rüdiger Verfürth,et al. A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .
[14] Alexandre Ern,et al. Detailed Chemistry Modeling of Laminar Diffusion Flames On Parallel Computers , 1995, Int. J. High Perform. Comput. Appl..
[15] Panayot S. Vassilevski,et al. Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .
[16] M. Fortin,et al. Mixed Finite Element Methods and Applications , 2013 .
[17] G. Gatica. Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb{RT}_0$-$\mathbb{P}_1$-$\mathbb{P}_0$ approximations , 2006 .
[18] Claudio Canuto,et al. Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem , 1988 .
[19] Finite element approximations of viscous flows with varying density , 1992 .
[20] Numerical Study of a Three-Dimensional Chemical Vapor Deposition Reactor with Detailed Chemistry , 1996 .
[21] Francisco-Javier Sayas,et al. Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem , 2011, Math. Comput..
[22] C. P. Gupta,et al. A family of higher order mixed finite element methods for plane elasticity , 1984 .
[23] Shun Zhang,et al. Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation , 2012, Math. Comput..
[24] G. Gatica,et al. Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .
[25] R. Hiptmair. Finite elements in computational electromagnetism , 2002, Acta Numerica.
[26] G. Gatica,et al. A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem , 2011 .
[27] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[28] Carsten Carstensen,et al. A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..