A priori and a posteriori error analysis of a pseudostress-based mixed formulation of the Stokes problem with varying density

[1]  G. Gatica A Simple Introduction to the Mixed Finite Element Method: Theory and Applications , 2014 .

[2]  Philippe G. Ciarlet,et al.  The finite element method for elliptic problems , 2002, Classics in applied mathematics.

[3]  Vivette Girault,et al.  Finite Element Methods for Navier-Stokes Equations - Theory and Algorithms , 1986, Springer Series in Computational Mathematics.

[4]  Gabriel N. Gatica,et al.  A priori and a posteriori error analyses of a velocity-pseudostress formulation for a class of quasi-Newtonian Stokes flows , 2011 .

[5]  Norbert Heuer,et al.  A priori and a posteriori error analysis of an augmented mixed finite element method for incompressible fluid flows , 2008 .

[6]  G. Gatica,et al.  Pseudostress-Based Mixed Finite Element Methods for the Stokes Problem in ℝ n with Dirichlet Boundary Conditions. I: A Priori Error Analysis , 2012 .

[7]  Zhiqiang Cai,et al.  Pseudostress–velocity formulation for incompressible Navier–Stokes equations , 2010 .

[8]  R. Nicolaides Existence, Uniqueness and Approximation for Generalized Saddle Point Problems , 1982 .

[9]  Gabriel N. Gatica,et al.  Analysis of a pseudostress-based mixed finite element method for the Brinkman model of porous media flow , 2013, Numerische Mathematik.

[10]  Gabriel N. Gatica,et al.  Augmented Mixed Finite Element Methods for the Stationary Stokes Equations , 2008, SIAM J. Sci. Comput..

[11]  Gabriel N. Gatica,et al.  Augmented mixed finite element methods for a vorticity‐based velocity–pressure–stress formulation of the Stokes problem in 2D , 2011 .

[12]  G. Gatica,et al.  A low-order mixed finite element method for a class of quasi-Newtonian Stokes flows. Part I: a priori error analysis , 2004 .

[13]  Rüdiger Verfürth,et al.  A posteriori error estimation and adaptive mesh-refinement techniques , 1994 .

[14]  Alexandre Ern,et al.  Detailed Chemistry Modeling of Laminar Diffusion Flames On Parallel Computers , 1995, Int. J. High Perform. Comput. Appl..

[15]  Panayot S. Vassilevski,et al.  Mixed finite element methods for incompressible flow: Stationary Stokes equations , 2010 .

[16]  M. Fortin,et al.  Mixed Finite Element Methods and Applications , 2013 .

[17]  G. Gatica Analysis of a new augmented mixed finite element method for linear elasticity allowing $\mathbb{RT}_0$-$\mathbb{P}_1$-$\mathbb{P}_0$ approximations , 2006 .

[18]  Claudio Canuto,et al.  Generalized Inf-Sup Conditions for Chebyshev Spectral Approximation of the Stokes Problem , 1988 .

[19]  Finite element approximations of viscous flows with varying density , 1992 .

[20]  Numerical Study of a Three-Dimensional Chemical Vapor Deposition Reactor with Detailed Chemistry , 1996 .

[21]  Francisco-Javier Sayas,et al.  Analysis of fully-mixed finite element methods for the Stokes-Darcy coupled problem , 2011, Math. Comput..

[22]  C. P. Gupta,et al.  A family of higher order mixed finite element methods for plane elasticity , 1984 .

[23]  Shun Zhang,et al.  Mixed methods for stationary Navier-Stokes equations based on pseudostress-pressure-velocity formulation , 2012, Math. Comput..

[24]  G. Gatica,et al.  Analysis of a velocity–pressure–pseudostress formulation for the stationary Stokes equations ☆ , 2010 .

[25]  R. Hiptmair Finite elements in computational electromagnetism , 2002, Acta Numerica.

[26]  G. Gatica,et al.  A residual-based a posteriori error estimator for a fully-mixed formulation of the Stokes–Darcy coupled problem , 2011 .

[27]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[28]  Carsten Carstensen,et al.  A posteriori error estimate for the mixed finite element method , 1997, Math. Comput..