Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrödinger equation

Abstract The Crank–Nicolson scheme as well as its modified schemes is widely used in numerical simulations for the nonlinear Schrodinger equation. In this paper, we prove the multisymplecticity and symplecticity of this scheme. Firstly, we reconstruct the scheme by the concatenating method and present the corresponding discrete multisymplectic conservation law. Based on the discrete variational principle, we derive a new variational integrator which is equivalent to the Crank–Nicolson scheme. Therefore, we prove the multisymplecticity again from the Lagrangian framework. Symplecticity comes from the proper discrete Hamiltonian structure and symplectic integration in time. We also analyze this scheme on stability and convergence including the discrete mass conservation law. Numerical experiments are presented to verify the efficiency and invariant-preserving property of this scheme. Comparisons with the multisymplectic Preissmann scheme are made to show the superiority of this scheme.

[1]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[2]  S. Reich,et al.  Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .

[3]  M. Qin,et al.  A multisymplectic variational integrator for the nonlinear Schrödinger equation , 2002 .

[4]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[5]  C. M. Schober,et al.  Symplectic integrators for the Ablowitz–Ladik discrete nonlinear Schrödinger equation , 1999 .

[6]  E. Hairer,et al.  Geometric Numerical Integration , 2022, Oberwolfach Reports.

[7]  L. Einkemmer Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.

[8]  Jinsong Hu,et al.  Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation , 2008, Appl. Math. Comput..

[9]  C. Schober,et al.  Geometric integrators for the nonlinear Schrödinger equation , 2001 .

[10]  Andrew G. Glen,et al.  APPL , 2001 .

[11]  Marcel Bauer,et al.  Numerical Methods for Partial Differential Equations , 1994 .

[12]  Robert I. McLachlan,et al.  On Multisymplecticity of Partitioned Runge-Kutta Methods , 2008, SIAM J. Sci. Comput..

[13]  Mark J. Ablowitz,et al.  Symplectic methods for the nonlinear Schro¨dinger equation , 1994 .

[14]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[15]  B. M. Fulk MATH , 1992 .

[16]  Bin Wang,et al.  Concatenating construction of the multisymplectic schemes for 2+1-dimensional sine-Gordon equation , 2004 .

[17]  Wang Yu-Shun,et al.  Two New Simple Multi-Symplectic Schemes for the Nonlinear Schrödinger Equation , 2008 .

[18]  Ben-yu Guo,et al.  The convergence of numerical method for nonlinear Schro¨dinger equation , 1986 .

[19]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[20]  J. Crank,et al.  A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .

[21]  Yunqing Huang,et al.  An Alternating Crank--Nicolson Method for Decoupling the Ginzburg--Landau Equations , 1998 .

[22]  Songhe Song,et al.  Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa-Holm equation , 2011, Comput. Phys. Commun..

[23]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[24]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[25]  Steve Shkoller,et al.  A variational approach to second-order multisymplectic field theory , 2000 .

[26]  R. McLachlan Symplectic integration of Hamiltonian wave equations , 1993 .

[27]  Víctor M. Pérez-García,et al.  Symplectic methods for the nonlinear Schrödinger equation , 1996 .

[28]  Xin Xinquan,et al.  Transformation of Sign of Nonlinear Refraction between Mo(W)/S/Cu Planar Metal Clusters , 2008 .