Derivation of the multisymplectic Crank-Nicolson scheme for the nonlinear Schrödinger equation
暂无分享,去创建一个
[1] E. Hairer,et al. Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .
[2] S. Reich,et al. Multi-symplectic integrators: numerical schemes for Hamiltonian PDEs that conserve symplecticity , 2001 .
[3] M. Qin,et al. A multisymplectic variational integrator for the nonlinear Schrödinger equation , 2002 .
[4] S. Reich. Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .
[5] C. M. Schober,et al. Symplectic integrators for the Ablowitz–Ladik discrete nonlinear Schrödinger equation , 1999 .
[6] E. Hairer,et al. Geometric Numerical Integration , 2022, Oberwolfach Reports.
[7] L. Einkemmer. Structure preserving numerical methods for the Vlasov equation , 2016, 1604.02616.
[8] Jinsong Hu,et al. Crank-Nicolson finite difference scheme for the Rosenau-Burgers equation , 2008, Appl. Math. Comput..
[9] C. Schober,et al. Geometric integrators for the nonlinear Schrödinger equation , 2001 .
[10] Andrew G. Glen,et al. APPL , 2001 .
[11] Marcel Bauer,et al. Numerical Methods for Partial Differential Equations , 1994 .
[12] Robert I. McLachlan,et al. On Multisymplecticity of Partitioned Runge-Kutta Methods , 2008, SIAM J. Sci. Comput..
[13] Mark J. Ablowitz,et al. Symplectic methods for the nonlinear Schro¨dinger equation , 1994 .
[14] J. M. Sanz-Serna,et al. Numerical Hamiltonian Problems , 1994 .
[15] B. M. Fulk. MATH , 1992 .
[16] Bin Wang,et al. Concatenating construction of the multisymplectic schemes for 2+1-dimensional sine-Gordon equation , 2004 .
[17] Wang Yu-Shun,et al. Two New Simple Multi-Symplectic Schemes for the Nonlinear Schrödinger Equation , 2008 .
[18] Ben-yu Guo,et al. The convergence of numerical method for nonlinear Schro¨dinger equation , 1986 .
[19] J. Marsden,et al. Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.
[20] J. Crank,et al. A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type , 1947 .
[21] Yunqing Huang,et al. An Alternating Crank--Nicolson Method for Decoupling the Ginzburg--Landau Equations , 1998 .
[22] Songhe Song,et al. Multi-symplectic wavelet collocation method for the nonlinear Schrödinger equation and the Camassa-Holm equation , 2011, Comput. Phys. Commun..
[23] T. Bridges. Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.
[24] S. Reich,et al. Numerical methods for Hamiltonian PDEs , 2006 .
[25] Steve Shkoller,et al. A variational approach to second-order multisymplectic field theory , 2000 .
[26] R. McLachlan. Symplectic integration of Hamiltonian wave equations , 1993 .
[27] Víctor M. Pérez-García,et al. Symplectic methods for the nonlinear Schrödinger equation , 1996 .
[28] Xin Xinquan,et al. Transformation of Sign of Nonlinear Refraction between Mo(W)/S/Cu Planar Metal Clusters , 2008 .