Mössbauer spectroscopic study of iron and cobalt metabolic transformations in cells of the bacterium Azospirillum brasilense Sp7

[1]  A. Kamnev,et al.  Study of the rhizobacterium Azospirillum brasilense Sp245 using Mössbauer spectroscopy with a high velocity resolution: Implication for the analysis of ferritin-like iron cores , 2014 .

[2]  P. Hildebrandt,et al.  Escherichia coli RIC Is Able to Donate Iron to Iron-Sulfur Clusters , 2014, PloS one.

[3]  K. Kovács,et al.  Mössbauer spectroscopic study of 57Fe metabolic transformations in the rhizobacterium Azospirillum brasilense Sp245 , 2014 .

[4]  A. Kamnev Emission (57Co) Mössbauer Spectroscopy: Biology‐Related Applications, Potentials, and Prospects , 2013 .

[5]  M. H. Torre Metal Ions in Biology and Medicine , 2013 .

[6]  V. Sharma,et al.  Mössbauer spectroscopy : applications in chemistry, biology, and nanotechnology , 2013 .

[7]  K. Kovács,et al.  Emission (57Co) Mössbauer spectroscopy as a tool for probing speciation and metabolic transformations of cobalt(II) in bacterial cells , 2013, Analytical and Bioanalytical Chemistry.

[8]  C. Carrano,et al.  A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica. , 2012, Journal of inorganic biochemistry.

[9]  P. Tarantilis,et al.  Comparing poly-3-hydroxybutyrate accumulation in Azospirillum brasilense strains Sp7 and Sp245: The effects of copper(II) , 2012 .

[10]  Y. Bashan,et al.  Chapter Two – How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment , 2010 .

[11]  M. Rohmer,et al.  Isoprenoid biosynthesis via the MEP pathway: in vivo Mössbauer spectroscopy identifies a [4Fe-4S]2+ center with unusual coordination sphere in the LytB protein. , 2009, Journal of the American Chemical Society.

[12]  M. Fontecave,et al.  Cobalt Stress in Escherichia coli , 2007, Journal of Biological Chemistry.

[13]  P. Tarantilis,et al.  Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. , 2006, Analytica chimica acta.

[14]  L. Barton,et al.  The Metabolism of Iron by Nitrogen-Fixing Rhizospheric Bacteria , 2006 .

[15]  L. Barton,et al.  Iron nutrition in plants and rhizospheric microorganisms , 2006 .

[16]  P. W. Royt,et al.  A Mössbauer spectroscopy study of cellular acquisition of iron from pyoverdine byPseudomonas aeruginosa , 2005, Biology of Metals.

[17]  Yu. D. Perfiliev,et al.  Structural characterization of glutamine synthetase from Azospirillum brasilense. , 2004, Biopolymers.

[18]  V. E. Smirnova,et al.  Trace cobalt speciation in bacteria and at enzymic active sites using emission Mössbauer spectroscopy , 2002, Analytical and bioanalytical chemistry.

[19]  S. Andrews Iron storage in bacteria. , 1998, Advances in microbial physiology.

[20]  C. Carrano,et al.  Transition Metals in Microbial Metabolism , 1997 .

[21]  Z. Klencsár,et al.  User-friendly software for Mössbauer spectrum analysis , 1996 .

[22]  A. Trautwein,et al.  Mössbauer and EXAFS studies of bacterioferritin fromStreptomyces olivaceus , 1994 .

[23]  E. Bill,et al.  Iron metabolism of Escherichia coli studied by Mössbauer spectroscopy and biochemical methods. , 1989, European journal of biochemistry.

[24]  G. Winkelmann,et al.  In vivo Mössbauer spectroscopy of iron uptake and ferrometabolism inEscherichia coli , 1989 .

[25]  Sudhamoy Ghosh,et al.  Iron Transport in Azospirillum brasilense: Role of the Siderophore Spirilobactin , 1987 .

[26]  N. N. GREENWOOD,et al.  Mossbauer Spectroscopy , 1966, Nature.