Mössbauer spectroscopic study of iron and cobalt metabolic transformations in cells of the bacterium Azospirillum brasilense Sp7
暂无分享,去创建一个
K. Kovács | A. Kamnev | Z. Homonnay | Yurii D. Perfiliev | L. Kulikov | A. V. Tugarova | E. Kuzmann | E. Kuzmann | L. A. Kulikov | Y. Perfiliev | A. Tugarova
[1] A. Kamnev,et al. Study of the rhizobacterium Azospirillum brasilense Sp245 using Mössbauer spectroscopy with a high velocity resolution: Implication for the analysis of ferritin-like iron cores , 2014 .
[2] P. Hildebrandt,et al. Escherichia coli RIC Is Able to Donate Iron to Iron-Sulfur Clusters , 2014, PloS one.
[3] K. Kovács,et al. Mössbauer spectroscopic study of 57Fe metabolic transformations in the rhizobacterium Azospirillum brasilense Sp245 , 2014 .
[4] A. Kamnev. Emission (57Co) Mössbauer Spectroscopy: Biology‐Related Applications, Potentials, and Prospects , 2013 .
[5] M. H. Torre. Metal Ions in Biology and Medicine , 2013 .
[6] V. Sharma,et al. Mössbauer spectroscopy : applications in chemistry, biology, and nanotechnology , 2013 .
[7] K. Kovács,et al. Emission (57Co) Mössbauer spectroscopy as a tool for probing speciation and metabolic transformations of cobalt(II) in bacterial cells , 2013, Analytical and Bioanalytical Chemistry.
[8] C. Carrano,et al. A multidisciplinary study of iron transport and storage in the marine green alga Tetraselmis suecica. , 2012, Journal of inorganic biochemistry.
[9] P. Tarantilis,et al. Comparing poly-3-hydroxybutyrate accumulation in Azospirillum brasilense strains Sp7 and Sp245: The effects of copper(II) , 2012 .
[10] Y. Bashan,et al. Chapter Two – How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth—A Critical Assessment , 2010 .
[11] M. Rohmer,et al. Isoprenoid biosynthesis via the MEP pathway: in vivo Mössbauer spectroscopy identifies a [4Fe-4S]2+ center with unusual coordination sphere in the LytB protein. , 2009, Journal of the American Chemical Society.
[12] M. Fontecave,et al. Cobalt Stress in Escherichia coli , 2007, Journal of Biological Chemistry.
[13] P. Tarantilis,et al. Instrumental analysis of bacterial cells using vibrational and emission Mössbauer spectroscopic techniques. , 2006, Analytica chimica acta.
[14] L. Barton,et al. The Metabolism of Iron by Nitrogen-Fixing Rhizospheric Bacteria , 2006 .
[15] L. Barton,et al. Iron nutrition in plants and rhizospheric microorganisms , 2006 .
[16] P. W. Royt,et al. A Mössbauer spectroscopy study of cellular acquisition of iron from pyoverdine byPseudomonas aeruginosa , 2005, Biology of Metals.
[17] Yu. D. Perfiliev,et al. Structural characterization of glutamine synthetase from Azospirillum brasilense. , 2004, Biopolymers.
[18] V. E. Smirnova,et al. Trace cobalt speciation in bacteria and at enzymic active sites using emission Mössbauer spectroscopy , 2002, Analytical and bioanalytical chemistry.
[19] S. Andrews. Iron storage in bacteria. , 1998, Advances in microbial physiology.
[20] C. Carrano,et al. Transition Metals in Microbial Metabolism , 1997 .
[21] Z. Klencsár,et al. User-friendly software for Mössbauer spectrum analysis , 1996 .
[22] A. Trautwein,et al. Mössbauer and EXAFS studies of bacterioferritin fromStreptomyces olivaceus , 1994 .
[23] E. Bill,et al. Iron metabolism of Escherichia coli studied by Mössbauer spectroscopy and biochemical methods. , 1989, European journal of biochemistry.
[24] G. Winkelmann,et al. In vivo Mössbauer spectroscopy of iron uptake and ferrometabolism inEscherichia coli , 1989 .
[25] Sudhamoy Ghosh,et al. Iron Transport in Azospirillum brasilense: Role of the Siderophore Spirilobactin , 1987 .
[26] N. N. GREENWOOD,et al. Mossbauer Spectroscopy , 1966, Nature.