Impact of latitudinal variations in vertical diffusivity on climate simulations

[1] The currently available theoretical and observational evidence for a latitudinal structure of thermocline vertical diffusivity is synthesized and included in a state of the art coupled climate model. Compared to the standard background value of 0.1 cm2 s−1, the simulations with the latitudinal structure show only little change in the meridional overturning circulation or northward heat transport. However, two regions are identified which are sensitive to the value of vertical diffusivity: the equatorial band, where only small changes in sea surface temperature lead to precipitation responses with basin-wide teleconnections, and the North Atlantic, where diffusivity affects the spiciness of Labrador Sea water and subsequently the Gulf Stream path.

[1]  A. E. Gill Some simple solutions for heat‐induced tropical circulation , 1980 .

[2]  Thomas B. Sanford,et al.  Reduced mixing from the breaking of internal waves in equatorial waters , 2003, Nature.

[3]  Rüdiger Gerdes,et al.  On the influence of DSOW in a numerical model of the North Atlantic general circulation , 1995 .

[4]  A. Watson,et al.  Mixing of a tracer in the pycnocline , 1998 .

[5]  Neil Pomphrey,et al.  Nonlinear interactions among internal gravity waves , 1986 .

[6]  G. Wüst Über die Zweiteilung der Hydrosphäre , 1949 .

[7]  S. Philander,et al.  How different wind stress patterns affect the tropical-subtropical circulations of the Upper Ocean , 1995 .

[8]  Gokhan Danabasoglu,et al.  Attribution and Impacts of Upper-Ocean Biases in CCSM3 , 2006 .

[9]  R. Hallberg,et al.  Pacific Subtropical Cell Response to Reduced Equatorial Dissipation , 2008 .

[10]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[11]  K. Bryan,et al.  A water mass model of the world ocean circulation , 1979 .

[12]  Robert Pinkel,et al.  Internal waves across the Pacific , 2007 .

[13]  T. Hibiya,et al.  Spatial and temporal distribution of the wind‐induced internal wave energy available for deep water mixing in the North Pacific , 2000 .

[14]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[15]  Marika M. Holland,et al.  Ocean viscosity and climate , 2008 .

[16]  J. Sprintall,et al.  Spatial and Temporal Patterns of Small-Scale Mixing in Drake Passage , 2007 .

[17]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[18]  By,et al.  Some simple solutions for heat-induced tropical circulation , 2006 .

[19]  A. Gordon,et al.  Vertical Mixing in the Indonesian Thermocline , 1992 .

[20]  M. Jochum,et al.  Sensitivity of Tropical Rainfall to Banda Sea Diffusivity in the Community Climate System Model , 2008 .

[21]  Frank O. Bryan,et al.  Ocean Chlorofluorocarbon and Heat Uptake during the Twentieth Century in the CCSM3 , 2006 .

[22]  R. Neale,et al.  The Impact of Convection on ENSO: From a Delayed Oscillator to a Series of Events , 2008 .

[23]  Carl Wunsch,et al.  VERTICAL MIXING, ENERGY, AND THE GENERAL CIRCULATION OF THE OCEANS , 2004 .

[24]  Dan E. Kelley,et al.  A Basinwide Estimate of Vertical Mixing in the Upper Pycnocline: Spreading of Bomb Tritium in the North Pacific Ocean , 1999 .

[25]  George L. Mellor,et al.  A Numerical Study of the Variability and the Separation of the Gulf Stream, Induced by Surface Atmospheric Forcing and Lateral Boundary Flows , 1992 .

[26]  S. Harper Thermocline ventilation and pathways of tropical–subtropical water mass exchange , 2000 .

[27]  P. Lu,et al.  Dynamics of the Pacific Subsurface Countercurrents , 2002 .

[28]  W. Collins,et al.  The Community Climate System Model Version 3 (CCSM3) , 2006 .

[29]  R. Davis,et al.  Diapycnal Mixing in the Ocean: Equations for Large-Scale Budgets , 1994 .

[30]  Jiwei Tian,et al.  Latitudinal Distribution of Mixing Rate Caused by the M2 Internal Tide , 2006 .

[31]  D. Bailey,et al.  Formation and pathways of North Atlantic Deep Water in a coupled ice–ocean model of the Arctic–North Atlantic Oceans , 2005 .

[32]  R. Fiedler,et al.  Explicit tidal forcing in an ocean general circulation model , 2007 .

[33]  Gregory C. Johnson,et al.  Equatorial Pacific Ocean Horizontal Velocity, Divergence, and Upwelling* , 2001 .

[34]  H. Simmons Spectral modification and geographic redistribution of the semi-diurnal internal tide , 2008 .

[35]  Detlef Stammer,et al.  Adjusting Internal Model Errors through Ocean State Estimation , 2005 .

[36]  J. Pedlosky,et al.  The Ventilated Thermocline , 1983 .

[37]  M. Visbeck,et al.  Widespread Intense Turbulent Mixing in the Southern Ocean , 2004, Science.

[38]  K. Taylor,et al.  The Community Climate System Model , 2001 .

[39]  R. E. Livezey,et al.  Teleconnective response of the Pacific-North American region atmosphere to large central equatorial Pacific SST anomalies , 1997 .

[40]  Eli Tziperman,et al.  Rates of Water Mass Formation in the North Atlantic Ocean , 1992 .

[41]  C. H. McComas Equilibrium Mechanisms within the Oceanic Internal Wave Field , 1977 .

[42]  Frank O. Bryan,et al.  Parameter sensitivity of primitive equation ocean general circulation models , 1987 .

[43]  P. Lu,et al.  Interaction between the Subtropical and Equatorial Ocean Circulations: The Subtropical Cell , 1994 .

[44]  M. Gregg Variations in the Intensity of Small-Scale Mixing in the Main Thermocline , 1977 .

[45]  Randy Showstack,et al.  World Ocean Database , 2009 .

[46]  G. Danabasoglu,et al.  Tracer budgets in the warm water sphere , 1996 .

[47]  Gösta Walin,et al.  On the relation between sea‐surface heat flow and thermal circulation in the ocean , 1982 .

[48]  Ryan L. Sriver,et al.  Observational evidence for an ocean heat pump induced by tropical cyclones , 2007, Nature.

[49]  W. Munk,et al.  Abyssal recipes II: energetics of tidal and wind mixing , 1998 .

[50]  R. Fine,et al.  The Penetration of Tritium into the Tropical Pacific , 1987 .

[51]  Jeffery R. Scott,et al.  The Location of Diapycnal Mixing and the Meridional Overturning Circulation , 2002 .

[52]  Douglas R. Caldwell,et al.  Observations of Boundary Mixing over the Continental Slope , 2002 .

[53]  T. Gerkema,et al.  On the transformation of Pacific Water into Indonesian Throughflow Water by internal tidal mixing , 2007 .

[54]  G. Vallis,et al.  The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre , 2007 .

[55]  E. Sarachik,et al.  On the Importance of Vertical Resolution in Certain Ocean General Circulation Models , 1990 .

[56]  C. Eden,et al.  Spreading of near‐inertial energy in a 1/12° model of the North Atlantic Ocean , 2007 .

[57]  J. MacKinnon,et al.  Subtropical catastrophe: Significant loss of low‐mode tidal energy at 28.9° , 2005 .

[58]  Dimitris Menemenlis,et al.  Using Green's Functions to Calibrate an Ocean General Circulation Model , 2005 .

[59]  R. Neale,et al.  Evaluation of a CCSM3 Simulation with a Finite Volume Dynamical Core for the Atmosphere at 1° Latitude × 1.25° Longitude Resolution , 2008 .

[60]  P. Delecluse,et al.  Sensitivity of an Equatorial Pacific OGCM to the Lateral Diffusion , 1997 .

[61]  S. Jayne,et al.  The Impact of Abyssal Mixing Parameterizations in an Ocean General Circulation Model , 2009 .

[62]  Stephen M. Griffies,et al.  Spurious Diapycnal Mixing Associated with Advection in a z-Coordinate Ocean Model , 2000 .

[63]  W. Schmitz,et al.  A limited-area model of the Gulf Stream: design, initial experiments, and model-data intercomparison , 1989 .

[64]  F. Schott,et al.  The monsoon circulation of the Indian Ocean , 2001 .

[65]  A. Thurnherr,et al.  Global Abyssal Mixing Inferred from Lowered ADCP Shear and CTD Strain Profiles , 2006 .

[66]  Michael Steele,et al.  PHC: A Global Ocean Hydrography with a High-Quality Arctic Ocean , 2001 .

[67]  Andrew J. Watson,et al.  Evidence for slow mixing across the pycnocline from an open-ocean tracer-release experiment , 1993, Nature.

[68]  R. Davis,et al.  Diapycnal Mixing in the Ocean: The Osborn–Cox Model , 1994 .

[69]  T. Hibiya,et al.  Latitudinal dependence of diapycnal diffusivity in the thermocline estimated using a finescale parameterization , 2004 .

[70]  W. Collins,et al.  The Community Climate System Model: CCSM3 , 2004 .

[71]  Kevin E. Trenberth,et al.  Progress during TOGA in understanding and modeling global teleconnections associated with tropical sea surface temperatures , 1998 .