Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine beyond the Carnot Limit
暂无分享,去创建一个
Jan Klaers | E. Togan | A. Imamoğlu | S. Faelt | Atac Imamoglu | Emre Togan | Stefan Faelt | J. Klaers
[1] J. Rossnagel,et al. A single-atom heat engine , 2015, Science.
[2] Eric Lutz,et al. Energetics of quantum correlations , 2008, 0803.4067.
[3] Gerardo Adesso,et al. Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.
[4] D. Rugar,et al. Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.
[5] Marlan O Scully,et al. Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.
[6] J. Rossnagel,et al. Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.
[7] D. Chatterji,et al. A micrometre-sized heat engine operating between bacterial reservoirs , 2016, Nature Physics.
[8] F. Curzon,et al. Efficiency of a Carnot engine at maximum power output , 1975 .
[9] J.T.M. van Beek,et al. Piezoresistive heat engine and refrigerator , 2010, 1001.3170.
[10] Gershon Kurizki,et al. On the operation of machines powered by quantum non-thermal baths , 2015, 1508.06519.
[11] F. Marchesoni,et al. Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.
[12] Alessandro Cerè,et al. Squeezed-light optical magnetometry. , 2010, Physical review letters.
[13] I. Tinoco,et al. Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality , 2002, Science.
[14] D. Petrov,et al. Brownian Carnot engine , 2014, Nature Physics.
[15] Paul Skrzypczyk,et al. Extracting work from correlations , 2014, 1407.7765.
[16] Knight,et al. Properties of squeezed number states and squeezed thermal states. , 1989, Physical review. A, General physics.
[17] Shawn M. Douglas,et al. A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.
[18] T. Mallouk,et al. Powering nanorobots. , 2009, Scientific American.
[19] Dmitri Petrov,et al. Universal features in the energetics of symmetry breaking , 2013, Nature Physics.
[20] M. Sano,et al. Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .
[21] M. Collett,et al. Representations of Squeezed States with Thermal Noise , 1988 .
[22] Sebastian Deffner,et al. Thermodynamic universality of quantum Carnot engines. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.
[23] T. Long,et al. RÉFLEXIONS SUR LA PUISSANCE MOTRICE DU FEU, ET SUR LES MACHINES PROPRES A DÉVELOPPER CETTE PUISSANCE. , 1903 .
[24] Alexia Auffèves,et al. Extracting work from quantum measurement in Maxwell demon engines , 2017 .
[25] J. Parrondo,et al. Entropy production and thermodynamic power of the squeezed thermal reservoir. , 2015, Physical review. E.
[26] J. Eisert,et al. Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.
[27] Peter Talkner,et al. Single-temperature quantum engine without feedback control. , 2017, Physical review. E.
[28] Eric Lutz,et al. Efficiency of heat engines coupled to nonequilibrium reservoirs , 2013, 1303.6558.
[29] Clemens Bechinger,et al. Realization of a micrometre-sized stochastic heat engine , 2011, Nature Physics.
[30] Tao Wang,et al. Effects of reservoir squeezing on quantum systems and work extraction. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.
[31] David Blair,et al. A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.
[32] J. Koski,et al. Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.
[33] Gershon Kurizki,et al. Universal thermodynamic limit of quantum engine efficiency , 2017 .
[34] E. Lutz,et al. Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.