Squeezed Thermal Reservoirs as a Resource for a Nanomechanical Engine beyond the Carnot Limit

A tiny engine can surpass the Carnot limit of efficiency when researchers engineer the thermal properties of the environment.

[1]  J. Rossnagel,et al.  A single-atom heat engine , 2015, Science.

[2]  Eric Lutz,et al.  Energetics of quantum correlations , 2008, 0803.4067.

[3]  Gerardo Adesso,et al.  Quantum-enhanced absorption refrigerators , 2013, Scientific Reports.

[4]  D. Rugar,et al.  Mechanical parametric amplification and thermomechanical noise squeezing. , 1991, Physical review letters.

[5]  Marlan O Scully,et al.  Extracting work from a single heat bath via vanishing quantum coherence. , 2002, Science.

[6]  J. Rossnagel,et al.  Nanoscale heat engine beyond the Carnot limit. , 2013, Physical review letters.

[7]  D. Chatterji,et al.  A micrometre-sized heat engine operating between bacterial reservoirs , 2016, Nature Physics.

[8]  F. Curzon,et al.  Efficiency of a Carnot engine at maximum power output , 1975 .

[9]  J.T.M. van Beek,et al.  Piezoresistive heat engine and refrigerator , 2010, 1001.3170.

[10]  Gershon Kurizki,et al.  On the operation of machines powered by quantum non-thermal baths , 2015, 1508.06519.

[11]  F. Marchesoni,et al.  Artificial Brownian motors: Controlling transport on the nanoscale , 2008, 0807.1283.

[12]  Alessandro Cerè,et al.  Squeezed-light optical magnetometry. , 2010, Physical review letters.

[13]  I. Tinoco,et al.  Equilibrium Information from Nonequilibrium Measurements in an Experimental Test of Jarzynski's Equality , 2002, Science.

[14]  D. Petrov,et al.  Brownian Carnot engine , 2014, Nature Physics.

[15]  Paul Skrzypczyk,et al.  Extractable Work from Correlations , 2014, 1407.7765.

[16]  Knight,et al.  Properties of squeezed number states and squeezed thermal states. , 1989, Physical review. A, General physics.

[17]  Shawn M. Douglas,et al.  A Logic-Gated Nanorobot for Targeted Transport of Molecular Payloads , 2012, Science.

[18]  T. Mallouk,et al.  Powering nanorobots. , 2009, Scientific American.

[19]  Dmitri Petrov,et al.  Universal features in the energetics of symmetry breaking , 2013, Nature Physics.

[20]  M. Sano,et al.  Experimental demonstration of information-to-energy conversion and validation of the generalized Jarzynski equality , 2010 .

[21]  M. Collett,et al.  Representations of Squeezed States with Thermal Noise , 1988 .

[22]  Sebastian Deffner,et al.  Thermodynamic universality of quantum Carnot engines. , 2015, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  T. Long,et al.  RÉFLEXIONS SUR LA PUISSANCE MOTRICE DU FEU, ET SUR LES MACHINES PROPRES A DÉVELOPPER CETTE PUISSANCE. , 1903 .

[24]  Alexia Auffèves,et al.  Extracting work from quantum measurement in Maxwell demon engines , 2017 .

[25]  J. Parrondo,et al.  Entropy production and thermodynamic power of the squeezed thermal reservoir. , 2015, Physical review. E.

[26]  J. Eisert,et al.  Probing the relaxation towards equilibrium in an isolated strongly correlated one-dimensional Bose gas , 2011, Nature Physics.

[27]  Peter Talkner,et al.  Single-temperature quantum engine without feedback control. , 2017, Physical review. E.

[28]  Eric Lutz,et al.  Efficiency of heat engines coupled to nonequilibrium reservoirs , 2013, 1303.6558.

[29]  Clemens Bechinger,et al.  Realization of a micrometre-sized stochastic heat engine , 2011, Nature Physics.

[30]  Tao Wang,et al.  Effects of reservoir squeezing on quantum systems and work extraction. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  David Blair,et al.  A gravitational wave observatory operating beyond the quantum shot-noise limit: Squeezed light in application , 2011, 1109.2295.

[32]  J. Koski,et al.  Experimental realization of a Szilard engine with a single electron , 2014, Proceedings of the National Academy of Sciences.

[33]  Gershon Kurizki,et al.  Universal thermodynamic limit of quantum engine efficiency , 2017 .

[34]  E. Lutz,et al.  Experimental verification of Landauer’s principle linking information and thermodynamics , 2012, Nature.