Robust Parameter Design Using Generalized Linear Mixed Models

In robust parameter design, it is often the case that the quality characteristic is nonnormal. An example in semiconductor manufacturing is resistivity, which typically follows a gamma distribution. It is also common to have models that contain, in addition to fixed polynomial effects, a random effect representing an extraneous source of variation. In this article, we demonstrate the use of generalized linear mixed models (GLMM) for situations in which the response is nonnormal and in which the noise variable is a random effect. We discuss the analysis of the random effects as well as the fixed effects in a fitted model using GLMM techniques. A numerical example from semiconductor manufacturing is provided for illustration.

[1]  Connie M. Borror,et al.  Robust Parameter Design: A Review , 2004 .

[2]  C. Mcgilchrist,et al.  Use of Generalised Linear Mixed Models for the Analysis of Clustered Survival Data , 1997 .

[3]  Douglas C. Montgomery,et al.  Analysis Considerations in Industrial Split-Plot Experiments with Non-Normal Responses , 2004 .

[4]  Ana Ivelisse Avilés,et al.  Linear Mixed Models for Longitudinal Data , 2001, Technometrics.

[5]  J. Nelder,et al.  Generalized Linear Models for Quality-Improvement Experiments , 1997 .

[6]  A. Khuri,et al.  Modified ridge analyses under nonstandard , 2000 .

[7]  Connie M. Borror,et al.  Response Surface Methodology: A Retrospective and Literature Survey , 2004 .

[8]  A. Agresti,et al.  The Use of Mixed Logit Models to Reflect Heterogeneity in Capture‐Recapture Studies , 1999, Biometrics.

[9]  Oliver Schabenberger,et al.  Population-averaged and subjectspecific approaches for clustered categorical data , 1996 .

[10]  André I. Khuri Response Surface Models with Mixed Effects , 1996 .

[11]  John A. Nelder,et al.  Robust Design via Generalized Linear Models , 2003 .

[12]  D. Stram,et al.  Variance components testing in the longitudinal mixed effects model. , 1994, Biometrics.

[13]  R. H. Myers,et al.  Response Surface Alternatives to the Taguchi Robust Parameter Design Approach , 1992 .

[14]  R. H. Myers,et al.  A TUTORIAL ON GENERALIZED LINEAR MODELS , 1997 .

[15]  William A. Brenneman,et al.  A Dual-Response Approach to Robust Parameter Design for a Generalized Linear Model , 2005 .

[16]  K. Liang,et al.  Asymptotic Properties of Maximum Likelihood Estimators and Likelihood Ratio Tests under Nonstandard Conditions , 1987 .

[17]  Helen Brown,et al.  Applied Mixed Models in Medicine , 2000, Technometrics.

[18]  J. Nelder,et al.  Hierarchical Generalized Linear Models , 1996 .

[19]  N. Breslow,et al.  Approximate inference in generalized linear mixed models , 1993 .

[20]  J. C. Lu,et al.  Combined Generalized Linear Modelling–Non‐Linear Programming Approach to Robust Process Design—A Case‐Study in Circuit Board Quality Improvement , 1996 .

[21]  J R Landis,et al.  Association models for periodontal disease progression: a comparison of methods for clustered binary data. , 1995, Statistics in medicine.

[22]  R. H. Myers Generalized Linear Models: With Applications in Engineering and the Sciences , 2001 .

[23]  R. Wolfinger,et al.  Generalized linear mixed models a pseudo-likelihood approach , 1993 .

[24]  R. Wolfinger,et al.  Joint estimation of location, dispersion, and random effects in robust design , 1998 .

[25]  J. Engel,et al.  A generalized linear modeling approach to robust design , 1996 .

[26]  André I. Khuri,et al.  Response surface models with random block effects , 1992 .

[27]  Wallace P. Erickson,et al.  Analysis of count data from before-after control-impact studies , 2000 .