Algebraic Characterization of FO for Scattered Linear Orderings

We prove that for the class of sets of words indexed by countable scattered linear orderings, there is an equivalence between definability in first-order logic, star-free expressions with marked product, and recognizability by finite aperiodic semigroups which satisfy some additional equation.

[1]  Ch. Rispal,et al.  Automates sur les ordres linéaires : Complémentation , 2004 .

[2]  Marcel Paul Schützenberger,et al.  On Finite Monoids Having Only Trivial Subgroups , 1965, Inf. Control..

[3]  Wolfgang Thomas,et al.  Languages, Automata, and Logic , 1997, Handbook of Formal Languages.

[4]  Jean-Éric Pin,et al.  Syntactic Semigroups , 1997, Handbook of Formal Languages.

[5]  Véronique Bruyère,et al.  Automata on linear orderings , 2007, J. Comput. Syst. Sci..

[6]  David E. Muller,et al.  Infinite sequences and finite machines , 1963, SWCT.

[7]  S. Sieber On a decision method in restricted second-order arithmetic , 1960 .

[8]  Dominique Perrin,et al.  Finite Automata , 1958, Philosophy.

[9]  Olivier Carton,et al.  A Kleene Theorem for Languages of Words Indexed by Linear Orderings , 2005, Developments in Language Theory.

[10]  R. McNaughton,et al.  Counter-Free Automata , 1971 .

[11]  Alexander Moshe Rabinovich Star free expressions over the reals , 2000, Theor. Comput. Sci..

[12]  Frank Plumpton Ramsey,et al.  On a Problem of Formal Logic , 1930 .

[13]  Countably Complementable,et al.  LINEAR ORDERINGS , 2006 .

[14]  Nicolas Bedon,et al.  Schützenberger and Eilenberg theorems for words on linear orderings , 2012, J. Comput. Syst. Sci..

[15]  Julien Cristau,et al.  Automata and temporal logic over arbitrary linear time , 2009, FSTTCS.

[16]  Maurice Nivat,et al.  Ensembles reconnaissables de mots biinfinis , 1982, STOC '82.

[17]  Thomas Colcombet,et al.  Regular Languages of Words over Countable Linear Orderings , 2011, ICALP.

[18]  Nicolas Bedon,et al.  Finite Automata and Ordinals , 1996, Theor. Comput. Sci..

[19]  Maurice Nivat,et al.  Ensembles reconnaissables de mots biinfinis , 1986 .

[20]  J. Richard Büchi Transfinite Automata Recursions and Weak Second Order Theory of Ordinals , 1990 .

[21]  Danièle Beauquier Bilimites de Langages Reconnaissables , 1984, Theor. Comput. Sci..

[22]  Olivier Carton,et al.  Complementation of rational sets on countable scattered linear orderings , 2005, Int. J. Found. Comput. Sci..

[23]  Olivier Carton,et al.  Logic and Rational Languages of Words Indexed by Linear Orderings , 2009, Theory of Computing Systems.