Ranking Arguments With Compensation-Based Semantics

In almost all existing semantics in argumentation, a strong attack has a lethal effect on its target that a set of several weak attacks may not have. This paper investigates the case where several weak attacks may compensate one strong attack. It defines a broad class of ranking semantics, called α—BBS, which satisfy compensation. α—BBS assign a burden number to each argument and order the arguments with respect to those numbers. We study formal properties of α—BBS, implement an algorithm that calculates the ranking, and perform experiments that show that the approach computes the ranking very quickly. Moreover, an approximation of the ranking can be provided at any time.

[1]  Didier Dubois,et al.  On the Qualitative Comparison of Decisions Having Positive and Negative Features , 2008, J. Artif. Intell. Res..

[2]  Claudette Cayrol,et al.  Graduality in Argumentation , 2011, J. Artif. Intell. Res..

[3]  Jian Luo,et al.  Argument Ranking with Categoriser Function , 2014, KSEM.

[4]  Guillermo Ricardo Simari,et al.  On the accrual of arguments in defeasible logic programming , 2009, IJCAI 2009.

[5]  Phan Minh Dung,et al.  On the Acceptability of Arguments and its Fundamental Role in Nonmonotonic Reasoning, Logic Programming and n-Person Games , 1995, Artif. Intell..

[6]  Gabriele Kern-Isberner,et al.  On Controversiality of Arguments and Stratified Labelings , 2014, COMMA.

[7]  Nicolas Maudet,et al.  Coalitional games for abstract argumentation , 2014, COMMA.

[8]  Leila Amgoud,et al.  Ranking-Based Semantics for Argumentation Frameworks , 2013, SUM.

[9]  Pietro Baroni,et al.  SCC-recursiveness: a general schema for argumentation semantics , 2005, Artif. Intell..

[10]  Serena Villata,et al.  Changing One's Mind: Erase or Rewind? , 2011, IJCAI.

[11]  Matthias Thimm,et al.  A Probabilistic Semantics for abstract Argumentation , 2012, ECAI.

[12]  Paul-Amaury Matt,et al.  A Game-Theoretic Measure of Argument Strength for Abstract Argumentation , 2008, JELIA.

[13]  J. Miller Numerical Analysis , 1966, Nature.

[14]  Gerhard Brewka,et al.  Preferred Subtheories: An Extended Logical Framework for Default Reasoning , 1989, IJCAI.

[15]  J. Douglas Faires,et al.  Numerical Analysis , 1981 .

[16]  Pietro Baroni,et al.  On principle-based evaluation of extension-based argumentation semantics , 2007, Artif. Intell..

[17]  Anthony Hunter,et al.  A logic-based theory of deductive arguments , 2001, Artif. Intell..

[18]  Sanjay Modgil,et al.  On the Graded Acceptability of Arguments , 2015, IJCAI.

[19]  João Leite,et al.  Social Abstract Argumentation , 2011, IJCAI.