Flexible NO2 sensors from renewable cellulose nanocrystals/iron oxide composites

[1]  Thalappil Pradeep,et al.  Anisotropic nanomaterials: structure, growth, assembly, and functions , 2011, Nano reviews.

[2]  Weiguo Song,et al.  One-step synthesis of magnetic composites of cellulose@iron oxide nanoparticles for arsenic removal , 2013 .

[3]  Wei-Dong Li,et al.  Synthesis of TiO2 nanocubes induced by cellulose nanocrystal (CNC) at low temperature , 2007 .

[4]  Stephan Barcikowski,et al.  Cytotoxicity and ion release of alloy nanoparticles , 2012, Journal of Nanoparticle Research.

[5]  Kishor Kumar Sadasivuni,et al.  Graphene and graphitic derivative filled polymer composites as potential sensors. , 2015, Physical chemistry chemical physics : PCCP.

[6]  Dae-Sik Lee,et al.  Flexible room-temperature NO2 gas sensors based on carbon nanotubes/reduced graphene hybrid films , 2010 .

[7]  Yongan Huang,et al.  A patterned ZnO nanorod array/gas sensor fabricated by mechanoelectrospinning-assisted selective growth. , 2015, Chemical communications.

[8]  B. Bonnemain,et al.  Superparamagnetic agents in magnetic resonance imaging: physicochemical characteristics and clinical applications. A review. , 1998, Journal of drug targeting.

[9]  P. Su,et al.  Flexible NO2 sensors fabricated by layer-by-layer covalent anchoring and in situ reduction of graphene oxide , 2014 .

[10]  Qinqin Zhou,et al.  Ultrasensitive and selective nitrogen dioxide sensor based on self-assembled graphene/polymer composite nanofibers. , 2014, ACS applied materials & interfaces.

[11]  Kishor Kumar Sadasivuni,et al.  Transparent and flexible cellulose nanocrystal/reduced graphene oxide film for proximity sensing. , 2015, Small.

[12]  W. Shi,et al.  Fully printed, rapid-response sensors based on chemically modified graphene for detecting NO2 at room temperature. , 2014, ACS applied materials & interfaces.

[13]  Gwiy-Sang Chung,et al.  Highly flexible room temperature NO2 sensor based on MWCNTs-WO3 nanoparticles hybrid on a PET substrate , 2015 .

[14]  Changzhong Jiang,et al.  Magnetic Iron Oxide Nanoparticles: Synthesis and Surface Functionalization Strategies , 2008, Nanoscale research letters.

[15]  Sabu Thomas,et al.  Synergistic effect of multi walled carbon nanotubes and reduced graphene oxides in natural rubber for sensing application , 2013 .

[16]  P. Su,et al.  Fabrication of flexible NO2 sensors by layer-by-layer self-assembly of multi-walled carbon nanotubes and their gas sensing properties , 2009 .

[17]  Kishor Kumar Sadasivuni,et al.  Reduced graphene oxide filled cellulose films for flexible temperature sensor application , 2015 .

[18]  Wangzhou Shi,et al.  Fully gravure-printed NO2 gas sensor on a polyimide foil using WO3-PEDOT:PSS nanocomposites and Ag electrodes , 2015 .

[19]  G. Pourroy,et al.  Compressible multi-scale magnetic constructs: decorating the outer surface of self-assembled microbubbles with iron oxide nanoparticles , 2013 .

[20]  Wolfram Klitzsch [K] , 1962, Dendara. Catalogue des dieux et des offrandes.

[21]  G. Grüner,et al.  Transparent and flexible carbon nanotube transistors. , 2005, Nano letters.

[22]  Dinesh K. Aswal,et al.  Nitrogen dioxide (NO2) sensing performance of p-polypyrrole/n-tungsten oxide hybrid nanocomposites at room temperature , 2015 .

[23]  Choon-Gi Choi,et al.  Flexible NO 2 gas sensor using multilayer graphene films by chemical vapor deposition , 2013 .

[24]  K. Sadasivuni,et al.  Designing dual phase sensing materials from polyaniline filled styrene–isoprene–styrene composites , 2014 .

[25]  D. Bhattacharyya,et al.  Iron oxide nanoparticle synthesis in aqueous and membrane systems for oxidative degradation of trichloroethylene from water , 2012, Journal of Nanoparticle Research.

[26]  Kishor Kumar Sadasivuni,et al.  Cellulose/graphene nanocomposite as multifunctional electronic and solvent sensor material , 2015 .

[27]  Iole Venditti,et al.  Chemiresistive polyaniline-based gas sensors: A mini review , 2015 .

[28]  Hyun-U Ko,et al.  Disposable chemical sensors and biosensors made on cellulose paper , 2014, Nanotechnology.

[29]  Jaehwan Kim,et al.  Designing flexible energy and memory storage materials using cellulose modified graphene oxide nanocomposites. , 2015, Physical chemistry chemical physics : PCCP.

[30]  P. Vikesland,et al.  Environmental science and engineering applications of nanocellulose-based nanocomposites , 2014 .

[31]  M. Buongiorno Nardelli,et al.  Carbon nanotube-metal cluster composites: a new road to chemical sensors? , 2005, Nano letters.

[32]  É. Duguet,et al.  Magnetic nanoparticle design for medical diagnosis and therapy , 2004 .

[33]  Sabu Thomas,et al.  Evolution from graphite to graphene elastomer composites , 2014 .

[34]  Dongxiang Zhou,et al.  Physically Flexible, Rapid‐Response Gas Sensor Based on Colloidal Quantum Dot Solids , 2014, Advanced materials.

[35]  Dongho Kim,et al.  Graphene-based gas sensor: metal decoration effect and application to a flexible device , 2014 .

[36]  M. Kamal,et al.  Effect of surface energy on dispersion and mechanical properties of polymer/nanocrystalline cellulose nanocomposites. , 2013, Biomacromolecules.

[37]  Sabu Thomas,et al.  Development of poly(isobutylene-co-isoprene)/reduced graphene oxide nanocomposites for barrier, dielectric and sensingapplications , 2013 .

[38]  Devendra Kumar,et al.  Recent progress in the development of nano-structured conducting polymers/nanocomposites for sensor applications , 2009 .

[39]  A. Kumar,et al.  Polyaniline nanofiber reinforced nanocomposite based highly sensitive piezoelectric sensors for selective detection of hydrochloric acid: Analysis of response mechanism , 2014 .

[40]  Sungryul Yun,et al.  Discovery of Cellulose as a Smart Material , 2006 .