Finite difference discretization of the extended Fisher-Kolmogorov equation in two dimensions
暂无分享,去创建一个
[1] L. Vázquez,et al. Numerical solution of the sine-Gordon equation , 1986 .
[2] Luming Zhang. Convergence of a conservative difference scheme for a class of Klein-Gordon-Schrödinger equations in one space dimension , 2005, Appl. Math. Comput..
[3] Luming Zhang,et al. A conservative numerical scheme for a class of nonlinear Schrödinger equation with wave operator , 2003, Appl. Math. Comput..
[4] Daisuke Furihata,et al. A stable and conservative finite difference scheme for the Cahn-Hilliard equation , 2001, Numerische Mathematik.
[5] Z. Fei,et al. Two energy conserving numerical schemes for the Sine-Gordon equation , 1991 .
[6] P. Coullet,et al. Nature of spatial chaos. , 1987, Physical review letters.
[7] Gilbert Strang,et al. The Discrete Cosine Transform , 1999, SIAM Rev..
[8] Dee Gt,et al. Bistable systems with propagating fronts leading to pattern formation. , 1988 .
[9] Anders Wäänänen,et al. Advanced resource connector middleware for lightweight computational Grids , 2007 .
[10] W. van Saarloos,et al. Front propagation into unstable states: Marginal stability as a dynamical mechanism for velocity selection. , 1988, Physical review. A, General physics.
[11] A. K. Pani,et al. Orthogonal cubic spline collocation method for the extended Fisher-Kolmogorov equation , 2005 .
[12] A. K. Pani,et al. Numerical methods for the extended Fisher-Kolmogorov (EFK) equation , 2006 .
[13] W. Strauss,et al. Numerical solution of a nonlinear Klein-Gordon equation , 1978 .
[14] Ting-chun Wang,et al. Analysis of some new conservative schemes for nonlinear Schrödinger equation with wave operator , 2006, Appl. Math. Comput..
[15] Georgios Akrivis,et al. Finite difference discretization of the Kuramoto-Sivashinsky equation , 1992 .
[16] Wim van Saarloos. Dynamical velocity selection: Marginal stability. , 1987 .