Substitutional bias confounds inference of cyanelle origins from sequence data

[1]  H. Kishino,et al.  Maximum likelihood inference of protein phylogeny and the origin of chloroplasts , 1990, Journal of Molecular Evolution.

[2]  A. Sidow,et al.  Compositional statistics: An improvement of evolutionary parsimony and its application to deep branches in the tree of life , 1990, Journal of Molecular Evolution.

[3]  H. Kishino,et al.  Evaluation of the maximum likelihood estimate of the evolutionary tree topologies from DNA sequence data, and the branching order in hominoidea , 1989, Journal of Molecular Evolution.

[4]  S. Palumbi,et al.  Rates of molecular evolution and the fraction of nucleotide positions free to vary , 1989, Journal of Molecular Evolution.

[5]  A. Wilson,et al.  Ancient origin of lactalbumin from lysozyme: Analysis of DNA and amino acid sequences , 2005, Journal of Molecular Evolution.

[6]  T. Jukes,et al.  Silent nucleotide substitutions and G+C content of some mitochondrial and bacterial genes , 2005, Journal of Molecular Evolution.

[7]  Allan C. Wilson,et al.  Mitochondrial DNA sequences of primates: Tempo and mode of evolution , 2005, Journal of Molecular Evolution.

[8]  M. Kuntz,et al.  The nucleotide sequence of five ribosomal protein genes from the cyanelles ofCyanophora paradoxa: Implications concerning the phylogenetic relationship between cyanelles and chloroplasts , 2005, Journal of Molecular Evolution.

[9]  J. Shively,et al.  Nucleotide sequences ofCyanophora paradoxa cellular and cyanelle-associated 5S ribosomal RNAs: The cyanelle as a potential intermediate in plastid evolution , 2005, Journal of Molecular Evolution.

[10]  K. Valentin,et al.  The psbA-gene from a red alga resembles those from Cyanobacteria and Cyanelles , 1990, Current Genetics.

[11]  H. Bohnert,et al.  Evolutionary relationship of psbA genes from cyanobacteria, cyanelles and plastids , 1989, Current Genetics.

[12]  H. Bothe,et al.  Metabolic activities in Cyanophora paradoxa and its cyanelles , 1982, Planta.

[13]  H. Bothe,et al.  Metabolic activities in Cyanophora paradoxa and its cyanelles , 1982, Planta.

[14]  Ming-Qun Xu,et al.  Bacterial origin of a chloroplast intron: conserved self-splicing group I introns in cyanobacteria , 1990, Science.

[15]  J. Palmer,et al.  Different fates of the chloroplast tufA gene following its transfer to the nucleus in green algae. , 1990, Proceedings of the National Academy of Sciences of the United States of America.

[16]  D. Bryant,et al.  The cyanelle genome of Cyanophora paradoxa encodes ribosomal proteins not encoded by the chloroplast genomes of higher plants , 1990, FEBS letters.

[17]  D Penny,et al.  Trees from sequences: panacea or Pandora's box. , 1990 .

[18]  W. Campbell,et al.  Codon usage in higher plants, green algae, and cyanobacteria. , 1990, Plant physiology.

[19]  Michael D. Hendy,et al.  A Framework for the Quantitative Study of Evolutionary Trees , 1989 .

[20]  G. Pesole,et al.  Stochastic models of molecular evolution and the estimation of phylogeny and rates of nucleotide substitution in the hominoid primates , 1989 .

[21]  S. Golden,et al.  psbA genes indicate common ancestry of prochlorophytes and chloroplasts , 1989, Nature.

[22]  N. Pace,et al.  The relationship of a prochlorophyte Prochlorothrix hollandicato green chloroplasts , 1989, Nature.

[23]  M. Sogin,et al.  Phylogenetic meaning of the kingdom concept: an unusual ribosomal RNA from Giardia lamblia. , 1989, Science.

[24]  F. Corpet Multiple sequence alignment with hierarchical clustering. , 1988, Nucleic acids research.

[25]  M. Kuntz,et al.  A class-I intron in a cyanelle tRNA gene from Cyanophora paradoxa: phylogenetic relationship between cyanelles and plant chloroplasts. , 1988, Gene.

[26]  N. Pace,et al.  Evolutionary relationships among cyanobacteria and green chloroplasts , 1988, Journal of bacteriology.

[27]  J. Alam,et al.  Genes encoding the alpha, gamma, delta, and four F0 subunits of ATP synthase constitute an operon in the cyanobacterium Anabaena sp. strain PCC 7120 , 1988, Journal of bacteriology.

[28]  N. Sueoka Directional mutation pressure and neutral molecular evolution. , 1988, Proceedings of the National Academy of Sciences of the United States of America.

[29]  Wen-Hsiung Li,et al.  Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[30]  S. Osawa,et al.  Origin and evolution of organisms as deduced from 5S ribosomal RNA sequences. , 1987, Molecular biology and evolution.

[31]  J. Walker,et al.  The organization and sequence of the genes for ATP synthase subunits in the cyanobacterium Synechococcus 6301. Support for an endosymbiotic origin of chloroplasts. , 1987, Journal of molecular biology.

[32]  G. Zurawski Evolution of Higher-Plant Chloroplast DNA-Encoded Genes: Implications for Structure-Function and Phylogenetic Studies , 1987 .

[33]  S. Osawa,et al.  The guanine and cytosine content of genomic DNA and bacterial evolution. , 1987, Proceedings of the National Academy of Sciences of the United States of America.

[34]  T. Kohchi,et al.  Genetic system of chloroplasts. , 1987, Cold Spring Harbor symposia on quantitative biology.

[35]  J. Gillespie,et al.  RATES OF MOLECULAR EVOLUTION , 1986 .

[36]  M. Bishop,et al.  Evolutionary trees from nucleic acid and protein sequences , 1985, Proceedings of the Royal Society of London. Series B. Biological Sciences.

[37]  D. Bryant,et al.  Gene map for the Cyanophora paradoxa cyanelle genome , 1985, Journal of bacteriology.

[38]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[39]  M. Clegg,et al.  Molecular evolution of chloroplast DNA sequences. , 1984, Molecular biology and evolution.

[40]  N. Takahata,et al.  Molecular cloning and sequence analysis of the cyanobacterial gene for the large subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[41]  J. Palmer,et al.  Chloroplast DNA rearrangements are more frequent when a large inverted repeat sequence is lost , 1982, Cell.

[42]  T. Cavalier-smith,et al.  Eukaryote kingdoms: seven or nine? , 1981, Bio Systems.

[43]  R. Rippka,et al.  Deoxyribonucleic Acid Base Composition of Cyanobacteria , 1979 .