Contributions of Particle Image Velocimetry to Helicopter Aerodynamics: A Review.

The advancement of flow measurement techniques continues to extend experimental boundaries and thus significantly contributes to improving our understanding of both basic and applied aerodynamics. This is particularly apparent in the case of particle image velocimetry (PIV), where its application has furthered the existing knowledge in several areas of helicopter rotor aerodynamics. The complex nature of helicopter rotor flows presents unique challenges to experimentalists, including transonic flow, concentrated vortices and dynamic stall. To illustrate the impact of the technological advancements on the way helicopter aerodynamics is studied today, the development of PIV since the early nineties of the last century is reviewed and some recent PIV applications are described. Using examples of main rotor wakes, dynamic stall and flow control investigations, the capabilities of large–scale, time–resolved and volumetric PIV are summarized.

[1]  Holger Mai,et al.  Dynamic stall and its passive control investigations on the OA209 airfoil section , 2005 .

[2]  K. Pengel,et al.  Recording and evaluation methods of PIV investigations on a helicopter rotor model , 2004 .

[3]  Stephen B. Jones,et al.  A synchronous strobed laser light sheet for rotor flow visualization , 1991 .

[4]  Jürgen Kompenhans,et al.  Feasibility and Capabilities of Particle Image Velocimetry (PIV) for large Scale Model Rotor Testing , 1998 .

[5]  J. Gordon Leishman,et al.  Turbulence Modifications and Phase Couplings in Ground Effect under Simulated Brownout Conditions , 2013 .

[6]  Terence A. Ghee,et al.  A study of the rotor wake of a small-scale rotor model in forward flight using laser light sheet flow visualization with comparisons to analytical models , 1992 .

[7]  nbsp,et al.  High-Speed Experiments on Combustion-Powered Actuation for Dynamic Stall Suppression , 2016 .

[8]  Jürgen Kompenhans,et al.  PIV Measurements and Laser-Sheet Visualization of the Unsteady Flowfield Over an Airfoil Pitching in Dynamic Stall Conditions , 1995 .

[9]  Jürgen Kompenhans,et al.  Demonstration by PIV of the Non-Reproducibility of the Flow Field Around an Airfoil Pitching Under Deep Dynamic Stall Conditions and Consequences Thereof , 1997 .

[10]  Leishman,et al.  Investigation of Sediment Entrainment in Brownout Using High-Speed Particle Image Velocimetry , 2009 .

[11]  Frank N. Coton,et al.  Examination of vortex deformation during blade-vortex interaction , 1996 .

[12]  J. Gordon Leishman,et al.  Investigation into the Rollup and Diffusion of Rotor Tip Vortices using Laser Doppler Velocimetry , 1997 .

[13]  Tim Lee,et al.  PIV study of flow around unsteady airfoil with dynamic trailing-edge flap deflection , 2008 .

[14]  Giuseppe Gibertini,et al.  Experimental investigation of the dynamic stall phenomenon on a NACA 23012 oscillating airfoil , 2013 .

[15]  Boeing,et al.  Application of Vortex Visualization Test Techniques to Rotor Noise Research , 1970 .

[16]  K. R. Reddy,et al.  An investigation of fundamental flow structures in ground effect with application to the development of brownout conditions in hover , 2014 .

[17]  H. C. Curtiss,et al.  Rotor Aerodynamics in Ground Effect at Low Advance Ratios. , 1984 .

[18]  Luther N. Jenkins,et al.  Mechanisms of Active Aerodynamic Load Reduction on a Rotorcraft Fuselage With Rotor Effects , 2016 .

[19]  J. Gordon Leishman,et al.  Measurements of the Velocity and Turbulence Structure , 1997 .

[20]  W. Geißler,et al.  Numerical and Experimental Investigations of Unsteady Flows under Deep Dynamic Stall Conditions , 1994 .

[21]  M.,et al.  HELICOPTER ROTOR WAKE GEOMETRY AND AIRLOADS AND DEVELOPMENT OF LASER DOPPLER VELOCIMETER FOR USE IN HELICOPTER ROTOR WAKES , 2013 .

[22]  Narayanan Komerath,et al.  An Exploration of Radial Flow on a Rotating Blade in Retreating Blade Stall , 2013 .

[23]  Markus Raffel,et al.  Blade tip vortex measurements on actively twisted rotor blades , 2017 .

[24]  Juergen Kompenhans,et al.  PIV measurements of unsteady transonic flow fields above a NACA 0012 airfoil , 1993, Other Conferences.

[25]  A. Betz Vdi Die Hubschraube in Bodennähe. , 1937 .

[26]  Gloria K. Yamauchi,et al.  Investigating Tiltrotor Formation Flight via 1/48-Scale Wind Tunnel Experiment , 2006 .

[27]  J. G. Leishman,et al.  Measurements of the velocity and turbulence structure of a rotor tip vortex , 1997 .

[28]  James T. Heineck,et al.  PIV Measurements of the Wake of a Tandem-Rotor Helicopter in Proximity to a Ship , 2004 .

[29]  Nandeesh Hiremath,et al.  Effects of Advance Ratio and Radial Location on the Vortex Structure on a Rotating Blade in Reverse Flow , 2015 .

[30]  K. Mulleners,et al.  The onset of dynamic stall revisited , 2012 .

[31]  P. F. Sheridan,et al.  Aerodynamics of Heli-copter Flight near the Ground , 1977 .

[32]  K. Saripalli Application of particle imaging velocimetry techniques to helicopter rotor flowfields at McDonnell Douglas Aerospace , 1995 .

[33]  Kevin W. Noonan,et al.  Navier-Stokes Simulation of a Heavy Lift Slowed-Rotor Compound Helicopter Configuration , 2009 .

[34]  Bernhard Wieneke,et al.  Tomographic particle image velocimetry , 2006 .

[35]  K. Pengel,et al.  FLOW MEASUREMENTS OF AN ISOLATED MODEL TILT ROTOR , 1999 .

[36]  R. Adrian Particle-Imaging Techniques for Experimental Fluid Mechanics , 1991 .

[37]  Montgomery Knight,et al.  Analysis of ground effect on the lifting airscrew , 1941 .

[38]  A. Prasad Particle image velocimetry , 2000 .

[39]  W. Geißler,et al.  Dynamic Stall Control by Airfoil Deformation , 1993 .

[40]  Narayanan Komerath,et al.  Discrete Structures in the Radial Flow Over a Rotor Blade in Dynamic Stall , 2008 .

[41]  Manikandan Ramasamy,et al.  Flowfield Measurements to Understand Effect of Wake Behavior on Rotor Performance , 2010 .

[42]  Markus Raffel,et al.  Dynamic stall on a fully equipped helicopter model , 2012 .

[43]  George N. Barakos,et al.  Assessment of CFD methods against experimental flow measurements for helicopter flows , 2012 .

[44]  N. Kondo,et al.  Application of stereoscopic PIV to helicopter rotor blade tip vortices , 2003, 20th International Congress on Instrumentation in Aerospace Simulation Facilities, 2003. ICIASF '03..

[45]  M. Lanz,et al.  Wing-rotor interactions on a 1/4-scale tiltrotor half-model , 2013 .

[46]  J. Gordon Leishman,et al.  Stereoscopic PIV Measurements in the Wake of a Hovering Rotor , 2000 .

[47]  J. Gordon Leishman,et al.  Benchmarking PIV with LDV for Rotor Wake Vortex Flows , 2006 .

[48]  A. Boutier,et al.  Analysis of helicopter blade vortex structure by laser velocimetry , 1996 .

[49]  M. Raffel,et al.  Vortical flow structures at a helicopter rotor model measured by LDV and PIV , 1998, The Aeronautical Journal (1968).

[50]  M. Raffel,et al.  Investigation of the unsteady flow velocity field above an airfoil pitching under deep dynamic stall conditions , 1995 .

[51]  J. Gordon Leishman,et al.  Interdependence of Diffusion and Straining of Helicopter Blade Tip Vortices , 2004 .

[52]  Phillip Davidson,et al.  Modern Testing Approaches Used to Characterize Dynamic Stall Regimes on Helicopter Airfoils , 2015 .

[53]  James T. Heineck,et al.  Application of Three-Component PIV to a Hovering Rotor Wake , 2000 .

[54]  Narayanan Komerath,et al.  Dynamic Stall Life Cycle on a Rotating Blade in Steady Forward Flight , 2014 .

[55]  J. Gordon Leishman,et al.  Measurements of Rotor Tip Vortices Using Three-Component Laser Doppler Velocimetry , 1996 .

[56]  Anjaneyulu Krothapalli,et al.  Unsteady flow past an airfoil pitching at a constant rate , 1992 .

[57]  Giuseppe Gibertini,et al.  Aerodynamic Interaction Between Rotor and Tilting Wing in Hovering Flight Condition , 2015 .

[58]  A. Le Pape,et al.  Experimental Investigations of Rotor-Fuselage Aerodynamic Interactions , 2007 .

[59]  Thomas R. Norman,et al.  Full-Scale Wind Tunnel Test of the UH-60A Airloads Rotor , 2011 .

[60]  Joseph Milluzzo,et al.  Investigation of Centrifugal Pumping Rotor Blades as a Means of Vortex Diffusion , 2015 .

[61]  Markus Raffel,et al.  Rotor Wake Vortex Definition-Evaluation of 3-C PIV Results of the HART-II Study , 2006 .

[62]  Jürgen Kompenhans,et al.  Measurement of Vortical Structures on a Helicopter Rotor Model in a Wind Tunnel by LDV and PIV , 1996 .

[63]  Hugues Richard,et al.  Analysis methodology for 3C-PIV data of rotary wing vortices , 2006 .

[64]  A. Schröder,et al.  Shake-The-Box: Lagrangian particle tracking at high particle image densities , 2016, Experiments in Fluids.

[65]  André Bauknecht,et al.  Characterization of blade tip vortices on large-scale rotors , 2016 .

[66]  W. Devenport,et al.  The structure and development of a wing-tip vortex , 1996, Journal of Fluid Mechanics.

[67]  Markus Raffel,et al.  Experimental Investigation of Dynamic Stall on a Pitching Rotor Blade Tip , 2016 .

[68]  Luther N. Jenkins,et al.  Development of a Large Field-of-View PIV System for Rotorcraft Testing in the 14- x 22-Foot Subsonic Tunnel , 2009 .

[69]  M. Raffel,et al.  Rotor Wake Measurements: Full-Scale and Model Tests , 2002 .

[70]  Narayanan Komerath,et al.  Visualization and Measurement of the Tip Vortex Core of a Rotor Blade in Hover , 1988 .

[71]  A. Le Pape,et al.  Investigation of Dynamic Stall Control by Deployable Vortex Generator using Time-Resolved PIV Analysis and URANS Computations , 2011 .

[72]  Holger Mai,et al.  On the effects of leading edge vortex generators on an OA209 airfoil , 2009 .

[73]  Charles E. Tinney,et al.  A study of the turbulence within a spiralling vortex filament using proper orthogonal decomposition , 2015, Journal of Fluid Mechanics.

[74]  Drew Landman,et al.  Investigation of Backward-Facing-Step Flow Field for Dynamic Interface Application , 2012 .

[75]  Markus Raffel,et al.  Investigation of the unsteady flow development over a pitching airfoil by means of TR-PIV , 2009 .

[76]  A Betz,et al.  The ground effect on lifting propellers , 1937 .

[77]  Benjamin Heine,et al.  Deployable Vortex Generator Dynamic Stall Alleviation through Experimental and Numerical Investigations , 2013 .

[78]  Markus Raffel,et al.  Aperiodicity in the near field of full-scale rotor blade tip vortices , 2011 .

[79]  J. C. Wu,et al.  The 3-D wake measurements near a hovering rotor for determining profile and induced drag , 1995 .

[80]  Markus Raffel,et al.  2C and 3C PIV measurements on a rotor in hover condition , 2006 .

[81]  J. Gordon Leishman,et al.  Turbulent Tip Vortex Measurements Using Dual-Plane Stereoscopic Particle Image Velocimetry , 2009 .

[82]  Kolja Kindler,et al.  A comprehensive PIV measurement campaign on a fully equipped helicopter model , 2012 .

[83]  J. Gordon Leishman,et al.  Investigation of Sediment Entrainment Using Dual-Phase, High-Speed Particle Image Velocimetry , 2010 .

[84]  Giuseppe Gibertini,et al.  Oscillating aerofoil and perpendicular vortex interaction , 2014 .

[85]  Berend G. van der Wall,et al.  Hover Tip Vortex Structure Test (HOTIS)- Test Documentation and Representative Results - , 2008 .

[86]  Kai Richter,et al.  Dynamic stall control by leading edge vortex generators , 2006 .

[87]  Tim Lee,et al.  Particle image velocimetry investigation of flow over unsteady airfoil with trailing-edge strip , 2008 .

[88]  B. W. van Oudheusden,et al.  Dynamic pitching effect on a laminar separation bubble , 2015 .

[89]  J. Gordon Leishman,et al.  In-Ground-Effect Aerodynamics of Rotors with Different Blade Tips , 2010 .

[90]  Markus Raffel,et al.  Micro-PIV and ELDV wind tunnel investigations of the laminar separation bubble above a helicopter blade tip , 2006 .

[91]  Markus Raffel,et al.  Dynamic stall development , 2013 .

[92]  J. Gordon Leishman,et al.  On the Relationship Between Blade Circulation and Tip Vortex Characteristics , 1998 .

[93]  Chee Tung,et al.  ROTOR WAKE VORTEX DEFINITION-INITIAL EVALUATION OF 3-C PIV RESULTS OF THE HART-II STUDY , 2002 .

[94]  Narayanan Komerath,et al.  Radial Flow Measurements Downstream of Forced Dynamic Separation on a Rotor Blade , 2006 .

[95]  Markus Raffel,et al.  Aerodynamic Results from the Star Hover Test: An Examination of Active Twist Actuation , 2015 .

[96]  Markus Raffel,et al.  Tip-Vortex Dynamics of a Pitching Rotor Blade-Tip Model , 2015 .

[97]  nbsp,et al.  Study of an SSC-A09 Airfoil in Compressible Dynamic Stall with Freestream Mach Oscillations , 2015 .

[98]  Markus Raffel,et al.  Investigation of the wake of low aspect ratio cylinders by tomographic PIV , 2011 .

[99]  Ewald Krämer,et al.  Experimental and numerical examination of a helicopter hovering in ground effect , 2013 .

[100]  Anton J. Landgrebe,et al.  An Analytical and Experimental Investigation of Helicopter Rotor Hover Performance and Wake Geometry Characteristics , 1971 .

[101]  Ari Glezer,et al.  Controlled transitory stall on a pitching airfoil using pulsed actuation , 2013 .

[102]  J. Kompenhans,et al.  Investigations of a wing tip vortex in air by means of DPIV , 1996 .

[103]  Markus Raffel,et al.  A Full-Scale Particle Image Velocimetry Investigation of “Young” Rotor Blade Tip Vortices , 2009 .

[104]  Donald W. Boatwright Measurements of Velocity Components in the Wake of a Full-Scale Helicopter Rotor in Hover , 1972 .

[105]  M. Raffel,et al.  Experimental and numerical investigations of dynamic stall on a pitching airfoil , 1996 .

[106]  Gloria K. Yamauchi,et al.  Measurements to Understand the Flow Mechanisms Contributing to Tandem-Rotor Outwash , 2015 .

[107]  Green,et al.  Measurements of a Rotor Flow in Ground Effect and Visualisation of the Brown-out Phenomenon , 2008 .

[108]  R. Gray AN AERODYNAMIC ANALYSIS OF A SINGLEBLADED ROTOR IN HOVERING AND LOW- SPEED FORWARD FLIGHT AS DETERMINED FROM SMOKE STUDIES OF THE VORTICITY DISTRIBUTION IN THE WAKE , 1956 .

[109]  Berend G. van der Wall,et al.  Detailed investigation of rotor blade tip vortex in hover condition by 2C and 3C-PIV , 2006 .

[110]  Markus Raffel,et al.  On the Generation of a Helicopter Aerodynamic Database , 2011 .

[111]  W. R. Splettstoesser,et al.  Key Results from a Higher Harmonic Control Aeroacoustic Rotor Test (HART) , 1997 .

[112]  Max Kramer Increase in the maximum lift of an airplane wing due to a sudden increase in its effective angle of attack resulting from a gust , 1932 .

[113]  James T. Heineck,et al.  Measurements of the Early Development of Trailing Vorticity from a Rotor , 2002 .

[114]  A. T. Conlisk,et al.  Modern helicopter rotor aerodynamics , 2001 .

[115]  Markus Raffel,et al.  Dynamic Stall Control by Passive Disturbance Generators , 2013 .

[116]  J. W. Elliott,et al.  The Wake of a Small-Scale Rotor in Forward Flight Using Flow Visualization , 1995 .

[117]  Charles E. Tinney,et al.  Dynamical characteristics of the tip vortex from a four-bladed rotor in hover , 2013 .

[118]  J. Gordon Leishman,et al.  Fluid Dynamics of Interacting Blade Tip Vortices With a Ground Plane , 2010 .

[119]  Markus Raffel,et al.  Experimental aspects of PIV applied to a Bo 105 helicopter in hover-flight condition. , 2001 .

[120]  Jürgen Kompenhans,et al.  Velocity measurement of compressible air flows utilizing a high-speed video camera , 1995 .

[121]  R. Adrian,et al.  Pulsed laser technique application to liquid and gaseous flows and the scattering power of seed materials. , 1985, Applied optics.

[122]  nbsp,et al.  Experimental and Computational Investigation of a Linearly Pitching NACA 0012 in Reverse Flow , 2016 .

[123]  B. W. Oudheusden,et al.  PIV-based pressure measurement , 2013 .

[124]  Fabrizio De Gregorio,et al.  Flow field characterization and interactional aerodynamics analysis of a complete helicopter , 2012 .

[125]  Manikandan Ramasamy,et al.  Aperiodicity Correction for Rotor Tip Vortex Measurements , 2011 .

[126]  Frank N. Coton,et al.  Preliminary results from a particle image velocimetry study of blade–vortex interaction , 1995, The Aeronautical Journal (1968).

[127]  Narayanan Komerath,et al.  Velocity measurements on a retreating blade in dynamic stall , 2014 .

[128]  Gloria K. Yamauchi,et al.  Wind Tunnel Measurements of Full-Scale UH-60A Rotor Tip Vortices , 2012 .

[129]  Anya R. Jones,et al.  Time-Averaged Aerodynamics of Sharp and Blunt Trailing-Edge Static Airfoils in Reverse Flow , 2014 .

[130]  Markus Raffel,et al.  Spanwise differences in static and dynamic stall on a pitching rotor blade tip model , 2017 .

[131]  James T. Heineck,et al.  Devices that Alter the Tip Vortex of a Rotor , 2001 .

[132]  Nandeesh Hiremath,et al.  A Summary of Flowfield Around a Rotor Blade in Reverse Flow , 2016 .

[133]  Benjamin Heine Passive Beeinflussung von Dynamic Stall durch Störgeneratoren , 2012 .

[134]  Gloria K. Yamauchi,et al.  PIV Measurements in the Wake of a Full-Scale Rotor in Forward Flight , 2011 .

[135]  K. Pengel,et al.  Helicopter ground vortex: comparison of numerical predictions with wind tunnel measurements , 2001 .

[136]  Kenneth W. McAlister,et al.  Rotor Wake Development During the First Revolution , 2013 .

[137]  J. Gordon Leishman,et al.  Understanding the Aerodynamic Efficiency of a Hovering Micro-Rotor , 2008 .