EXACT INFERENCE IN FOUR-PARAMETER GENERALIZED GAMMA DISTRIBUTIONS

The paper considers Bayesian analysis of the generalized four-parameter gamma distribution. Estimation of parameters using classical techniques is associated with important technical problems while Bayesian methods are not currently available for such distributions. Posterior inference is performed using numerical methods organized around Gibbs sampling. Predictive distributions and reliability can be estimated routinely using the proposed methods.

[1]  W. Wong,et al.  The calculation of posterior distributions by data augmentation , 1987 .

[2]  A. Cohen,et al.  Modified Moment Estimation for the Three-Parameter Inverse Gaussian Distribution , 1985 .

[3]  F. Famoye Continuous Univariate Distributions, Volume 1 , 1994 .

[4]  J. T. Webster,et al.  A Method for Discriminating Between Failure Density Functions Used In Reliability Predictions , 1965 .

[5]  J. Lawless Inference in the Generalized Gamma and Log Gamma Distributions , 1980 .

[6]  Lee J. Bain,et al.  Inferential Procedures for the Generalized Gamma Distribution , 1970 .

[7]  Linear estimation of location and scale parameters in the generalized gamma distribution , 1991 .

[8]  D. R. Wingo Computing Maximum-Likelihood Parameter Estimates of the Generalized Gamma Distribution by Numerical Root Isolation , 1987, IEEE Transactions on Reliability.

[9]  Efthymios G. Tsionas,et al.  Posterior analysis, prediction and reliability in three-parameter weibull distributions , 2000 .

[10]  H. Leon Harter,et al.  Maximum-Likelihood Estimation of the Parameters of a Four-Parameter Generalized Gamma Population from Complete and Censored Samples , 1967 .

[11]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[12]  Adrian F. M. Smith,et al.  Simple conditions for the convergence of the Gibbs sampler and Metropolis-Hastings algorithms , 1994 .

[13]  Betty Jones Whitten,et al.  Modified Moment Estimation for the Three-Parameter Weibull Distribution , 1984 .

[14]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[15]  E. Stacy A Generalization of the Gamma Distribution , 1962 .

[16]  Charles E. Antle,et al.  Reliability Estimation for the Generalized Gamma Distribution and Robustness of the Weibull Model , 1971 .

[17]  Brian D. Ripley,et al.  Stochastic Simulation , 2005 .

[18]  Adrian F. M. Smith,et al.  Bayesian computation via the gibbs sampler and related markov chain monte carlo methods (with discus , 1993 .

[19]  C. Chatfield Continuous Univariate Distributions, Vol. 1 , 1995 .