Identification of piecewise affine systems based on statistical clustering technique

This paper is concerned with the identification of a class of piecewise affine systems called a piecewise affine autoregressive exogenous (PWARX) model. The PWARX model is composed of ARX sub-models each of which corresponds to a polyhedral region of the regression space. Under the temporary assumption that the number of sub-models is known a priori, the input-output data are collected into several clusters by using a statistical clustering algorithm. We utilize support vector classifiers to estimate the boundary hyperplane between two adjacent regions in the regression space. In each cluster, the parameter vector of the sub-model is obtained by the least squares method. It turns out that the present statistical clustering approach enables us to estimate the number of sub-models based on the information criteria such as CAIC and MDL. The estimate of the number of sub-models is performed by applying the identification procedure several times to the same data set, after having fixed the number of sub-models to different values. Finally, we verify the applicability of the present identification method through a numerical example of a Hammerstein model.

[1]  Edoardo Amaldi,et al.  The MIN PFS problem and piecewise linear model estimation , 2002, Discret. Appl. Math..

[2]  Kristin P. Bennett,et al.  Multicategory Classification by Support Vector Machines , 1999, Comput. Optim. Appl..

[3]  M. Johansson,et al.  Piecewise Linear Control Systems , 2003 .

[4]  Lei Xu,et al.  A Comparative Study of Several Cluster Number Selection Criteria , 2003, IDEAL.

[5]  H. Bozdogan Model selection and Akaike's Information Criterion (AIC): The general theory and its analytical extensions , 1987 .

[6]  Ethem Alpaydın,et al.  Soft vector quantization and the EM algorithm 1 , 1998 .

[7]  Giancarlo Ferrari-Trecate,et al.  Conditions of Optimal Classification for Piecewise Affine Regression , 2003, HSCC.

[8]  Anders Rantzer,et al.  Computation of piecewise quadratic Lyapunov functions for hybrid systems , 1997, 1997 European Control Conference (ECC).

[9]  R. Redner,et al.  Mixture densities, maximum likelihood, and the EM algorithm , 1984 .

[10]  Robert A. Jacobs,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1993, Neural Computation.

[11]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .

[12]  Andrew R. Webb,et al.  Statistical Pattern Recognition , 1999 .

[13]  Jun-ichi Imura,et al.  Characterization of well-posedness of piecewise-linear systems , 2000, IEEE Trans. Autom. Control..

[14]  King-Sun Fu,et al.  IEEE Transactions on Pattern Analysis and Machine Intelligence Publication Information , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  Vladimir Vapnik,et al.  Statistical learning theory , 1998 .

[16]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[17]  Sankar K. Pal,et al.  Non-convex clustering using expectation maximization algorithm with rough set initialization , 2003, Pattern Recognit. Lett..

[18]  Mikael Johansson,et al.  Piecewise linear control systems - a computational approach , 2002, Lecture notes in control and information sciences.

[19]  Michael I. Jordan,et al.  Hierarchical Mixtures of Experts and the EM Algorithm , 1994, Neural Computation.

[20]  C. Fantuzzi,et al.  Identification of piecewise affine models in noisy environment , 2002 .

[21]  Johannes Schumacher,et al.  An Introduction to Hybrid Dynamical Systems, Springer Lecture Notes in Control and Information Sciences 251 , 1999 .

[22]  Alberto Bemporad,et al.  Identification of piecewise affine systems via mixed-integer programming , 2004, Autom..

[23]  Christopher M. Bishop,et al.  A Hierarchical Latent Variable Model for Data Visualization , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[24]  S. Sastry,et al.  An algebraic geometric approach to the identification of a class of linear hybrid systems , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[25]  Anil K. Jain,et al.  Statistical Pattern Recognition: A Review , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Ethem Alpaydin,et al.  Soft vector quantization and the EM algorithm , 1998, Neural Networks.

[27]  Alberto Bemporad,et al.  Observability and controllability of piecewise affine and hybrid systems , 2000, IEEE Trans. Autom. Control..

[28]  Alberto Bemporad,et al.  A Greedy Approach to Identification of Piecewise Affine Models , 2003, HSCC.

[29]  J. Rissanen,et al.  Modeling By Shortest Data Description* , 1978, Autom..

[30]  Bart De Schutter,et al.  Equivalence of hybrid dynamical models , 2001, Autom..

[31]  Local stability analysis of piecewise affine systems , 2003, 2003 European Control Conference (ECC).

[32]  Herbert Edelsbrunner,et al.  Algorithms in Combinatorial Geometry , 1987, EATCS Monographs in Theoretical Computer Science.

[33]  A. Juloski,et al.  Data-based hybrid modelling of the component placement process in pick-and-place machines , 2004 .

[34]  Stephen P. Boyd,et al.  Convex Optimization , 2004, Algorithms and Theory of Computation Handbook.

[35]  Didier Maquin,et al.  Parameter estimation of switching piecewise linear system , 2003, 42nd IEEE International Conference on Decision and Control (IEEE Cat. No.03CH37475).

[36]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[37]  Manfred Morari,et al.  A clustering technique for the identification of piecewise affine systems , 2001, Autom..